Volume- 2
Issue- 5
Year- 2015
Davi de L. Cavalcanti , Paulo H. da Silva , Dr.Sérgio P. Ramos , Dr.Camilo E. La Rotta H., Dra. Galba M.C.Takaki
The Photosynthetic Fuel Cell (PFC) is considered a promising new technology. This kind of Microbial Fuel Cell (MFC) uses microalgae as electron acceptors attached to the cathode compartment to decrease the operational costs with conventional MFC generating energy. Besides generate energy the microalgae have the ability to sequester atmospheric carbon dioxide by photosynthesis, and turn it into value-added biomass where the most valuable by-products are currently starch and lipids, which are the basis of the manufacture of biofuels such as bioethanol and biodiesel. In the present study the microalgae Chlorella vulgaris was used as an electron acceptor in a cathode compartment, where during ten days of experiments showed the amount of CO2 captured by the algae cells (7mg L of CO2). At the same time, the composition of the biomass was produced starch (3%) and lipids (70%), and electrochemical parameters such as coulombic efficiency (CE = 33.1%) and the maximum current density (Id max = 147 mA cm²). The results confirmed the high potential of C. vulgaris in power generation PFC, and in the generation of products of industrial interest.
[1] Appenroth, K. J., Krech, K. , Keresztes, Á., Fischer, W., Koloczek, H., (2010) “Effects of nickel on the chloroplasts of the duckweeds Spirodela polyrhiza and Lemna minor and their possible use in biomonitoring and phytoremediation”, Chemosphere 78, pp 216–223..
[2] De Caprariis, B., De Filippis, P., Di Battista, A., Di Palma, L., Scarsella, M., (2014) “Exoelectrogenic Activity of aGreen Microalgae, Chlorella vulgaris, in a Bio-Photovoltaic Cells (BPVs)” Chemical Engineering Transactions, 38, pp 523-528.
[3] Cheah, W.Y., Show, P.L., Chang, J-S., Ling, T. C., Juan, J. C., (2015) Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae. Bioresource Technology 184. pp 190–201.
[4] La Rotta C. E. H., Leite, A. L., Dantas, P. V., Ramos, S. P., De los Angeles Perez, M., Takaki, G. M. C., (2014) “Hybrid Microbial-Photosynthetic Biofuel Cells for Simultaneous Bacterial Glycerol Biotransformation and Algal Carbon Dioxide Capture”. J. Braz. Chem. Soc., Vol. 25, No. 3, pp 560-571.
[5] Medeiros, D. L., Sales, E. A., Kiperstok, A. 2015. “Energy production from microalgae biomass: carbon footprint and energy balance”, Journal of Cleaner Production 96, pp 493 - 500.
[6] Manocha, M. S., San-blas, G., Centeno,S. 1980 Lipid Composition of Pavacoccidioides bvasiliensis: Possible Correlation with Virulence of Different Strains. Journal of General Microbiology, 117, pp 147-1 54.
[7] Mendes, M.C.Q., Gonzalez, A.A.C., Menezes, M., Nunes, J.M.C., Pereira, S., Nascimento, I.A. 2012. Coleção de microalgas de ambientes dulciaquícolas naturais da Bahia, Brasil, como potencial fonte para a produção de biocombustíveis: uma abordagem taxonômica. Acta Botanica Brasilica 26(3): pp 691-696.
[8] Morant, K. V., Silva, P. H., Takaki, G. M. C., La Rotta C. E. H. 2014. Isolation and bioelectrochemical characterization of novel fungal sources with oxidasic activity applied in situ for the cathodic oxygen reduction in microbial fuel cells. Enzyme and Microbial Technology 66, pp.20–27.
[9] Pienkos, P.T. & Darzins, A. 2009. The promisse and challengers of microalgal-derived biofuels. Biofuels, Bioproducts & Biorefining 3: pp 431-440.
[10] Rahimnejad, M., Ghoreyshi, A.A., Najafpour, G., Jafary, T. 2011. Power generation from organic substrate in batch and continuous flow microbial fuel cell operations. Applied Energy 88, pp 3999–4004.
[11] Schenk, P.M., Thomas-Hall, S.R., Stephens, E., Marx, U., Mussgnug, J.H. 2008. Second generation biofuels: highefficiency microalgae for biodiesel production. Bioenergy Res, 1, pp. 20–43.
[12] Jiang, Y. L., Zhang, W., Wang, J. F., Chen, Y., Shen, S. H., Liu, T. Z. 2013. Utilization of simulated flue gas for cultivation of Scenedesmus dimorphus. Bioresour. Technol.128, pp 359–364.
[13] Zhou, H., He, H., Jin, T., Wang, H. 2012. Power generation enhancement in novel microbial carbon capture cells with immobilized Chlorella vulgaris. Journal of Power Sources 214. pp 216 e 219.
Biologist, Postgraduate in Biological Sciences, Federal University of Pernambuco, Brazil;
No. of Downloads: 6 | No. of Views: 976
Alice Dames Vieira , Maria Julia Siqueira , Brenda Pinto Muniz , Hans Schmidt Santos , Felipe Barbosa Venâncio Freitas.
May 2020 - Vol 7, Issue 3
Valmir BAME, Lulezim HANELLI .
January 2020 - Vol 7, Issue 1
Valmir BAME, Lulezim HANELLI .
September 2019 - Vol 6, Issue 5