Volume- 3
Issue- 3
Year- 2016
Article Tools: Print the Abstract | Indexing metadata | How to cite item | Email this article | Post a Comment
Jaber Tayebi , Hossein Atashi , Neda Poudineh
CO conversion model and two models of selectivity of CH4 and C5 + productswere obtained for Fischer-Tropsch synthesis. The models were fitted to experimental data obtained by Co/SiO2catalystin isothermal packed-bed reactor. The operating conditions are as follows: temperature 473K, pressure 0.5 MPa, space velocity 0.08- 0.5 cm3 / (g-s) and water partial pressure 0.01-0.26 MPa.The influence of operating parameters, interaction of them and the effect of water on the CO conversion and the selectivity of products were investigated. Results show that both of the two operating parameters, i.e., water partial pressureand space velocity are influenced.Also it has been shown that as water partial pressure increases, the C5 + selectivity and the CO conversion are increased while the CH4 selectivity is decreased.
[1] Olewskia, T., Todica, B., Nowicki, L., Nikacevic, N., Bukura, D. B., 2015, Hydrocarbon selectivity models for iron-based Fischer–Tropsch catalyst. Chem. Eng. Res. Design.95,1– 11.DOI= http://dx.doi.org/10.1016/j.cherd.2014.12.015
[2] Nakhaei Pour, A., Hosaini, E., Tavasoli, A., Behroozsarand, A. R.., Dolati, F., 2014. Intrinsic kinetics of FischereTropsch synthesis over Co/CNTs catalyst: Effects of metallic cobalt particle size. J. Nat. Gas Sci. Eng. 21, 772-778.DOI= http://dx.doi.org/10.1016/j.jngse.2014.10.008.
[3] Shimizua, T., Ushikia, I., Otaa, M., Satoa, Y., Koizumib, N., Inomataa, H., 2015. Preparation of mesoporous silica supported cobaltcatalysts using supercritical fluids forFischer–Tropsch synthesis, Chem. Eng. Res.design.95,64–68.DOI= http://dx.doi.org/10.1016/j.cherd.2015.01.005.
[4] Teng, B., Chang, J., Wan, H., Lu, J., Zheng, S. H., Liu Y., Guo, X., 2007. A Corrected Comprehensive Kinetic Model of Fischer–Tropsch Synthesis. Chin. J. Catal, 28, 687-695. DOI= Doi: 10.1016/S1872-2067(07)60060-6.
[5] Khodakov, A.Y., Chu, W., Fongarland, P., 2007. Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. Chem Rev. 107, 1692–1744.DOI= 10.1021/cr050972v.
[6] Nakhaei Pour, A., Housaindokht, M.R., 2013. Fischer-Tropsch synthesis on iron catalyst promoted with HZSM-5 zeolite: Regeneration studies of catalyst. J. Nat. Gas Sci.Eng.14,49- 54.DOI= http://dx.doi.org/10.1016/j.jngse.2013.05.004.
[7] Kwack, SH., Bae, J.W., Park, M.J., Kim, S.M., Ha, K.S., Jun, K.W., 2011.Reaction modeling on the phosphorous-treated Ru/Co/Zr/SiO2 Fischer–Tropsch catalyst with the estimation of kinetic parameters and hydrocarbon distribution. Fuel. 90, 1383– 1394. DOI= doi10.1016/j.fuel.2011.01.010.
[8] Irankhah, A., Haghtalab, A., Farahani, E. V., Sadaghianizadeh, K., 2007. Fischer-Tropsch Reaction Kinetics of Cobalt Catalyst in Supercritical Phase. J. Natu. Gas. Chem, 16, 115- 120. DOI= 10.1016/S1003-9953(07)60036-X.
[9] Fu. T., Lv. J., Li. Z., 2014. Effect of Carbon Porosity and Cobalt Particle Size on the Catalytic Performance of Carbon Supported Cobalt Fischer–Tropsch Catalysts. Ind. Eng. Chem. Res. 53, 1342–50. DOI= 10.1021/ie402128y.
[10] Adib. H., Haghbakhsh, R., Saidi, M., Takassi, M. A., Sharifi, F., Koolivand, M., et al. 2013. Modeling and optimization of Fischer–Tropsch synthesis in the presence of Co (III)/Al2O3 catalyst using artificial neural networks and genetic algorithm. J. Nat. Gas. Sci. Eng. 10, 14–24. DOI= doi:10.1016/j.jngse.2012.09.001.
[11] Khakdaman, H. R., Sadaghiani, K., 2007. Separation of catalyst particles and wax from effluent of a Fischer-Tropsch slurry reactor using supercritical hexane. 85 (A2), 263–268. DOI= Doi: 10.1205/cherd06034.
[12] Bayat, M., Hamidi, M., Dehghani, Z., Rahimpour, M. R., Shariati, A., 2013. Sorption-enhanced reaction process in Fischer– Tropsch synthesis for production of gasoline and hydrogen: Mathematical modeling. J. Nat. Gas. Sci. Eng. 14, 225–237. DOI= doi:10.1016/j.jngse.2014.04.003.
[13] Chiang. S-W., Chang. C-C., Shie, J-L., Chang, C-Y., Ji, DR., Tseng, J-Y., 2012. Synthesis of alcohols and alkanes over potassium and vanadium promoted molybdenum carbides. J. Taiwan .Inst. Chem E. 43, 918-925. DOI= doi:10.1016/j.jtice.2012.07.008
[14] Hemmati, M. R., Kazemeini, M., Khorasheh, F., Zarkesh, J., 2013. Investigating the effect of calcination repetitions on the lifetime of Co/γ-Al2O3 catalysts in Fischer–Tropsch synthesis utilising the precursor's solution affinities. J. Taiwan. Inst. Chem. E 44, 205–213.DOI= doi:10.1016/j.jtice.2012.11.003
[15] Feyzi, M., Khodaei, M. M., Shahmoradi, J., 2014. Effect of sulfur on the catalytic performance of Fe–Ni/Al2O3 catalysts for light olefins production. J. Taiwan. Inst. Chem. E, 45, 452 –460. DOI= doi:10.1016/j.jtice.2013.05.017.
[16] Rahimpour, M.R., Jokar, S.M., Jamshidnejad, Z., 2012. A novel slurry bubble column membrane reactor concept for Fischer–Tropsch synthesis in GTL technology. Chem. Eng. Res. design. 90, 383–396. DOI= doi:10.1016/j.cherd.2011.07.014.
[17] Kunimoria, K., Arakawa, H., Uchijama, T., 1989.in Stud Sur SciCatal. Vol. 54, eds. M. Misono et al. Elsevier, Amsterdam.
[18] Fazlollahi, F., Sarkari, M., Gharebaghi, H., Atashi, H., Zarei, M. M., Mirzaei, A. A., Hecker, W. C., 2013. Preparation of FeMn/K/Al2O3 Fischer-Tropsch Catalyst and Its Catalytic Kinetics for the Hydrogenation of Carbon Monoxide. Chin. J. Chem. Eng. 21, 507-519. DOI= Doi: 10.1016/S1004-9541(13)60503-0
[19] NakhaeiPoura, A., Housaindokhta, M.R., Tayyari, S. F., Zarkeshb, J., KamaliShahric, M., 2011. Water-gas-shift kinetics over a Fe/Cu/La/Si catalyst in Fischer–Tropsch synthesis. Chem. Eng. Res. Design. 8 9, 262–269. DOI=doi:10.1016/j.cherd.2010.07.008.
[20] Qion, W., Zhang, H., Yang, W., Fang, D., Che, 2013. The comprehensive kinetics of Fischer–Tropsch synthesis over a Co/AC catalyst on the basis of CO insertion mechanism. Eng. J, 228, 526-534. doi:10.1016/j.cej.2013.05.039.
[21] Yates, I. C., Satterfield, C. N., 1991. Intrinsic kinetics of the fisher-tropsch synthesis on a cobalt catalyst. Energy Fuel. 5, 168– 173. DOI: 10.1021/ef00025a029.
[22] Visconti, C. G., Lietti, L., Tronconi, E., Forzatti, P., Zennaro, R., Finocchio, E., 2009. Fischer–Tropsch synthesis on a Co/Al2O3 catalyst with CO2 containing syngas. Appl. Catal A-Gen. 355, 61- 68. DOI= doi:10.1016/j.apcata.2008.11.027.
[23] Storsæter, S., Borg, Ø.,Blekkan, E. A., Holmen, A., 2005. Study of the effect of water on Fischer–Tropsch synthesis over supported cobalt catalysts. J. Catal, 231, 405–419. DOI= doi:10.1016/j.jcat.2005.01.036.
[24] Krishnamoorthy, S., Tu, M., Ojeda, M. P., Pinna, D., Iglesia, E., 2002. An Investigation of the Effects of Water on Rate and Selectivity for the Fischer–Tropsch Synthesis on Cobalt-Based Catalysts J. Catal.211, 422-433. DOI= Doi:10.1006/jcat.2002.3749
[25] Li, J., Jacobs, G., Das, T., Zhang, Y., Davis, B., 2002. Fischer–Tropsch synthesis: effect of water on the catalytic properties of a Co/SiO2 catalyst. Appl. Catal. A, 236, 67-76. DOI= Doi: 10.1016/S0926-860X (02)00276-4
[26] Minderhoud, J. K., Post, M. F. M., Sie, S. T., European Pat. Appl. 0 109 702 A1 (1983).
[27] Huber, G.W.; Guymon, C.G.; Conrad, T.L.; Stephenson, B.C.; and Bartholomew, C.H., 2001. Hydrothermal stability of Co/SiO2 Fischer-Tropsch synthesis catalysts. Studies in Surface Science and Catalysis, 139(Catalyst Deactivation 2001), 423-430. DOI=Doi: 10.1016/S0167-2991(01)80226-3
[28] Todic, B., OLewski, T., Nikacevic, N., Bukur, D., 2013. Modeling of Fischer-Tropsch Product Distribution over Fe-based Catalyst. Che. Eng. Tran, 32, 793-798. DOI=Dio: 10, 3303/CET1332133
[29] Iglesias, G. M., De, Vries, C., Claeys, M., Schaub, G., 2015. Chemical energy storage in gaseous hydrocarbons via iron Fischer–Tropsch synthesis from H2/CO2—Kinetics, selectivity and process considerations. Catal Tod. 242, 184-192. doi:10.1016/j.cattod.2014.05.020
Department of Chemical Engineering, Faculty of Engineering University of Sistan and Baluchestan, P.O.Box 98164-161, Zahedan, Iran
No. of Downloads: 9 | No. of Views: 1049
Alice Dames Vieira , Maria Julia Siqueira , Brenda Pinto Muniz , Hans Schmidt Santos , Felipe Barbosa Venâncio Freitas.
May 2020 - Vol 7, Issue 3
Valmir BAME, Lulezim HANELLI .
January 2020 - Vol 7, Issue 1
Valmir BAME, Lulezim HANELLI .
September 2019 - Vol 6, Issue 5