
International Journal of Innovative Research in Engineering & Management (IJIREM)

ISSN: 2350-0557, Volume-6, Issue-6, November 2019

www.ijirem.org

Copyright © 2019. Innovative Research Publications. All Rights Reserved 63

Quantifying Maintainability of Object Oriented Design:

An Organized Review
Mohit Kumar

Ph.D Scholar, Sai Nath University

Ranchi, Bihar, India

mohitsky25@gmail.com

Dr. Jarnail Singh

Professor, University Institute of

Computing, Chandigarh University,

Chandigarh

Dr. Abdullah

Assistant Professor, Department of

Information Technology, Adigrat

University Ethiopia-Africa

ABSTRACT
Maintainability is one of the most important quality indicators.

Its correct estimation or evaluation, all the time make easy and

improve the test and maintenance process. However,

maintainability has always been an elusive concept and its

correct quantification or evaluation is a difficult exercise.

Researchers and practitioners have always argued that

maintainability should be considered as a key attribute in order

to assurance the software quality. It has been find out from

systematic literature review that area researchers, quality

controllers and industry personnel had made significant efforts

to estimate software maintainability but at the source code level.

Calculating maintainability at source code level directs to late

arrival of desired information. An exact measure of software

quality fully depends on maintainability quantification This

paper shows the results of an organized literature review

conducted to collect related evidence on maintainability

quantification of object oriented software. In this paper, our

objective is to find the known complete and comprehensive

software maintainability quantification model and related

framework for estimating the maintainability of object oriented

software at an initial stage of development life cycle. Software

maintainability has turn into one of the most significant

concerns of the software industry. Maintainability is a key

quality attribute of software systems.

Keywords:
Maintainability, Modularity, Reusability, Analyzability,

Modifiability and Testability, Design phase, Object Oriented

Design.

1. INTRODUCTION
Software maintenance is a microcosm of software development

and has three- dimensional opinions. Maintenance may be

defined by defining the four activities that are undertaken after a

program is released for use. Software metrics provides an easy

and inexpensive way to detect and correct the program to control

the level of maintainability. One of the widely accepted

approaches to control the software maintenance cost is the

utilization of software metrics. Setting up measurement program

and metrics standards will help in preventing failures before the

maintenance process and reduces the requisite efforts during that

phase. Internal metrics is highly correlated with the

programmer’s opinion of maintainability. Finally, according to

ISO-9126 standard, maintainability consists of analyzability,

changeability, stability and testability [1, 4, 6, 19]. Maintenance

may be defined by defining the four activities [7, 10, 11, 16] that

are undertaken after a program is released for use. First activity

is the corrective maintenance that corrects uncovered errors after

software is in use. Another activity is adaptive maintenance is

applied when alterations in the outside background precipitate

modifications to software. The third activity incorporates

enhancements that are requested by customers and is defined as

predictive maintenance. The fourth and last activity is the

preventive maintenance, which improves future maintainability

and provides a basis for future enhancements. To find out the

deficiencies at in the early hours stage or early recognition of

location where failure occurred is an important effort to mitigate

the problem. Maintainability factor donate to 40-70% of the

price of software products. Improved maintainability guide to

reduced maintenance efforts and reduced price and time [10, 11,

36, 37, 39]. On the other hand, maintainability has always been

an elusive concept and its correct quantification or evaluation a

complex exercise. The majority of the studies measure

maintainability or precisely the attributes that have impact on

maintainability at the source code level. Our main passion is that

it is for the duration of the analysis and design phase that

maintainability analysis can yield the highest payoff: design

decisions can be made to improve maintainability earlier than

implementation starts. When the design meets the

maintainability requirements, it can be implemented and the

constraints added for maintainability enhancement of the design

and are required to be verified before maintaining [2, 3, 5, 41,

43, 47, 48]. In maintainability have a number of regrettable

consequences and as a result for many products and services is a

severe warning. There is a general agreement among industry

professionals and academicians to join together maintainability

with the development life cycle in order to deliver protected,

safe and reliable software inside time and budget [9, 14, 15, 17,

19, 20]. Our purpose is to present a comprehensive framework

to help measuring and assessing maintainability in a practical

manner, with a focus on the design stages of object-oriented

development.

2. MAINTAINABILITY EVALUATION
Maintainability Quantification at the source code level is a good

indicator of effort Quantification; it leads to the late appearance

of information in the development process. A lot of Models

exist, but no single model can take into custody a necessary

amount of software characteristics. There are no particular

model/tools that are applicable to all the circumstances. A

choice to change the design in order to improve maintainability

after coding has started may be very expensive and error-prone

[21, 22, 24, 27, 28, 29, 31]. Despite the fact that estimating

maintainability early in the development process may

Quantifying Maintainability of Object Oriented Design: An Organized Review

Copyright © 2019. Innovative Research Publications. All Rights Reserved 64

significantly reduce the overall cost. This may shape a roadmap

to industry personnel and study to assess, and preferably,

quantify software maintainability in design phase. So reducing

effort and improving software maintainability is a key objective

in order to reduce the number defects that result from poorly

designed software [30, 33, 34, 35,]. Therefore, it is an

understandable fact that estimating maintainability early on the

development procedure may significantly reduce maintenance

cost, time, effort, and rework. The early Quantification of

maintainability at design phase can yield the highest payoffs. On

the other hand, the lack of maintainability at early stage may not

be compensated during subsequent development life cycle.

3. MAINTAINABILITY AT DESIGN

PHASE
Quantification Programming methodology is based on objects

that involved functions and procedures, this concept allows

individual object to organize and group themselves together into

class. That requires the maintainability to be revealed because of

the complex structure of object oriented development system

because traditional testing approach is ineffective in this system.

Practitioners incessantly support that maintainability should be

planned early in the design phase. So it is important to identify

object oriented design artifacts to quantify maintainability

measures as early as possible in development life cycle. During

identification of design factors which have positive impact on

maintainability quantification, a pragmatic view should be

considered. If we consider through all factors and procedures

then they become more problematical, unproductive and time

consuming. Therefore essential to categorize maintainability

factors and measures which affect the movement positively and

straight [8, 38, 40]. In order to estimating maintainability, its

direct measures are to be identified. Design level aspects similar

abstraction, encapsulation, inheritance, cohesion, coupling etc.

will also be investigated keeping in view their impact on overall

maintainability. This process identifies object oriented design

constructs that are used during design phase of development

lifecycle and serve to define a variety of maintainability factors.

The contribution of each object oriented design characteristics is

analyzed for improvement in design maintainability.

4. DESIGN PROPERTIES THAT

INFLUENCES MAINTAINABILITY
Object oriented design properties overcome the negative aspect

of procedure oriented design. Classes in object oriented design

system provide an excellent structuring principle that allows a

structure to be divided into well designed units which may then

be implemented separately. Object oriented principles guide the

designers what to support and what to avoid. Several measures

have been defined in this approach so far to estimate object

oriented design [42, 44, 46]. There are several essential qualities

of object orientation that are known to be the basis of internal

qualities of object oriented design and support in the context of

maintainability quantification. These themes prominently

include encapsulation, inheritance, coupling, and cohesion etc.

One of the major advantage of having object orientation is its

support for software reusability, which may be achieved either

through the simple reuse of a class in a library or via inheritance

among relationship [24, 26, 45].Object oriented design

properties that have positive impact on maintainability

quantification has been identified and consolidated chart for the

same is given in Table 1.

Table 1: Object oriented design properties contributing in maintainability quantification: a critical look

Design Properties

Source/Study
Cohesion Coupling Encapsulation Inheritance Polymorphism

Gregor et al. (1996)   

Bruce & Shi (1998)    

B. Pettichord (2002)   

Baudry et al. (2002)   

M Bruntik (2004)  

S .Mouchawrab (2005)   

E Mulo(2007)    

Sujata et al. (2011)  

P. Malla et al. (2012)    

Nikfard et al. (2013)    

International Journal of Innovative Research in Engineering & Management (IJIREM)

ISSN: 2350-0557, Volume-6, Issue-6, November 2019

www.ijirem.org

Copyright © 2019. Innovative Research Publications. All Rights Reserved 65

5. CLOSELY RELATED WORK

5.1 Research Methodology
A systematic literature review is a technique of recognizing,

estimating and understanding the existing research result

significant to a particular research area or subject [22]. The

study in research area has mainly divided into two categories

primary and secondary studies. Primary study is an individual

studies contributing to the research and secondary study is a

systematic review of other research related to the research area,

topic or observable fact of interest [22]. The enthusiasm for

choosing systematic literature review as methodology of study

are to sum up the existing body of knowledge regarding the

research of concern, to recognize the gap in current research and

to present framework/ contextual for additional examination. In

this perspective, Study select the systematic review to sum up

the existing concepts of maintainability factors and

measurement in software engineering and apply that knowledge

to build up a maintainability assessment framework/model for

maintainability quantification

The justification for selecting this methodology is:

1. Data source selection

2. Search strategy development

3. Search string formation

4. Study selection criteria identification

5. Study quality assessment identification

6. Study extraction strategy identification

 Opening from 1970s to 2020 a range of maintainability

quantification models or techniques was developed. In 1977, Jim

McCall considered a software quality model called as McCall’s

model. In this model McCall acknowledged the 11 quality

factors broken down by the three key angles for characterizing

the quality attributes of a software product. The maintainability

of software is affected by a lot of factors, such as the availability

of qualified software staff, the easiness of system management,

the use of consistent programming languages etc. [7].

Inadvertent be short of care in design, implementation and

testing has a logical negative impact on the capability to

maintain the resultant software [8]. On or after the review of

literature it has been observed that a variety of researchers

planned many models for maintainability assessment, but in

almost all of these revisions, maintainability assessment based

on the procedures taken later than the coding phase of

development life cycle. For the cause that of this,

maintainability predictions are ready in the later stages of

development life cycle, and it turn out to be extremely difficult,

tough and expensive to get better the maintainability at that

stage. Study done by C Jin & JA Liu (2010) offerings the

applications of support vector machine and unconfirmed

learning in object oriented software maintainability estimation

through metrics. In this study, the software maintainability

predictor is performed at the source code level of development

life cycle. The proposed dependent variable was software

maintenance effort. Similarly the independent variables were

five object oriented metrics determined clustering method. The

results showed that the mean absolute relative error was 0.218 of

the predictor. Subsequently, we found that support vector

machine and clustering technique were supportive in emerging

software maintainability predictor. Novel predictor can be used

in the related software developed in the same background.

Work done by Gautama Kang (2011) emphasized dimension of

the software maintainability close the beginning in the software

development life cycle, mainly at the design period is very

significant, and it support designers to integrate required

improvement and corrections at design phase for improving

software maintainability of the delivered software. Earlier

MEMOOD model was developed which estimates the

maintainability of the software system on the basis of object

oriented metrics of software system. This work has suggested a

multivariate linear model Compound “MEMOOD”, which

assessments the maintainability of class diagrams of software

systems. Subsequently study make a comparison of MEMOOD

model and Compound MEMOOD model through regression

analysis and it is found that Compound MEMOOD Model gives

better results with the given dataset. Moreover, no quantitative

comparisons have been presented in this study. Study done by

Alisara Hincheeranan et.al (2012) evaluated maintainability

seeing maintainability and extensibility as two sub factors of

maintainability. He stated measuring maintainability of software

system at the design stage may facilitate a software designer

must improves the maintainability of software before deliver to

a customer. In this paper author developed the Maintainability

Estimation Tool (MET) for a maintainability estimation of

software system. This tool assist a software designer for

improves the maintainability of class diagram in design phase

and facilitate reduces the growing high cost of software

maintenance phase. Moreover, no quantitative validation has

been presented in this study. Al Dallal, J. (2013) considers

classes of three open source software systems. For every class,

study accounts for two real maintainability indicators; (1) the

number of revised lines of code (2) the number of revisions in

which the class was concerned. Through 19 internal quality

estimations, novelists empirically discover the effect of size,

cohesion and coupling on class level maintainability. Acquired

outcomes display that classes with enhanced qualities (greater

cohesion values and lesser coupling and size values) have

continuously improved maintainability (i.e. are more possible to

be effortlessly modified) than those of inferior qualities. The

proposed prediction models can help software designers to find

classes with low maintainability. In the work done by R. &

Chug A. (2014) offered a novel metric suite to overwhelmed the

shortages and redefine the relationship amongst design metrics

through software maintainability in data intensive applications.

The proposed metric suite is estimated, analyzed using five

proprietary software systems. The outcomes display that the

suggested metric suite is very supportive for maintainability

calculation of software systems in common and for data

intensive software systems in specific. The proposed metric

suite may be considerably useful to the developers in studying

the maintainability of intensive software systems before

deploying them. Work done by Rajendra et. al. (2015) evaluated

and authenticated the model for software maintainability based

on quality factors flexibility and extendibility [39]. The

outcomes they arrived stood important but by other factors

newer models for maintainability with better-quality outcomes

could be proposed. Study done by Ruchika Malhotra et.al.

(2016), in their research paper assembled a methodical analysis

of studies on software maintainability amongst the years 1991 to

2015[31]. The authors organized and scrutinized the effort on

maintainability by tangents of design metrics, tools, algorithms,

data sources and so on. They concise that design metrics was

Quantifying Maintainability of Object Oriented Design: An Organized Review

Copyright © 2019. Innovative Research Publications. All Rights Reserved 66

still the greatest preferred choice to capture the features of any

given software before installing it additional in prediction model

for formative the corresponding software maintainability.

Celia Chen et al. (2017) in their work stressed the vast level of

cost saving in software by understanding the significance of

maintainability, and recommended replies to queries of decision

concerning what portions of software to be reused, what portions

to be redeveloped, the theoretical valuation of effort requisite to

do so and thus giving pointers as how to decrease overall

budgets [32].

5.2 Analysis and Comparison

Table 2: An Organized Assessment of Maintainability

Models Consider by Various Researcher

Study

done

by

Yea

r

Maintainabil

ity

quantificatio

n method

Developme

nt

Stage

Authenticati

on

Dromey

’s

Quality

Model

199

5

Quality

Model

Code Level

Theoretical

justification

Muthan

na et al.

200

0

Model based

on

Polynomial

Linear

Regression

Design

Phase

No

Validation

Huffma

n Hayes

et al.

200

3

 Observe

Mine Adopt

(OMA) Based

on

Maintainabilit

y product

Code Level

Yes

Lucca-

Fasolin

o

WAM

M

200

4

Web

Application

Maintainabilit

y Model

Web based

Approach

Web based

Approach

Hayes

Zaho

200

5

(Main Pred

Model) LOC

(Lines of

Code), TCR

(True

Comment

Ratio)

Code level

No

Validation

Koten-

Gray

200

6

Bayesian

Network

Maintainabilit

y Prediction

Model

Code level

Yes

Zhou -

Leung

MARS

200

7

Multiple

Adaptive

Regression

Splines

Design

Phase

No

Implementati

on.

Prasant

h

Ganesh

and

Dalton

200

8

With the help

of FRT(Fuzzy

Repertory

Table)

Design

Phase

Not

Validated

MO.

Elish

200

9

Produced

Tree net

Code level

Not

Validated

and KO

Elish

model using

stochastic

gradient

boosting

C Jin &

JA Liu

201

0

Based on

Support

vector

machine

Code level

Based on

vector

machine

S. Rizvi

et al.

201

0

MEMOOD

Model

Design

Phase

No

Validation

Gautam

a Kang

201

1

Compound

Memood

Model

Design

Phase

Not

Validated

Alisara

et al.

201

2

Maintainabilit

y Estimation

Tool (MET)

Code level

No

Validation

 Al

Dallal,

J.

201

3

Object

oriented class

maintainabilit

y calculation

via internal

quality

attribute.

Design and

code level

Not

Validated

R. &

Chug

A.

201

4

A Metric

Suite for

Predicting

Software

Maintainabilit

y in Data

Intensive

Applications.

Design

Phase

Based on

Metrics

Rajendr

a et. al.

201

5

Maintainabilit

y based on

quality sub

factors

Design

Phase

Based on

regression

line

Ruchika

Malhotr

a et.al.

201

6

Maintainabilit

y by tangents

of design

metrics

Not clear Not

Validated

Celia

Chen et

al.

201

7

Importance of

software

maintainabilit

y

SDLC Theoretical

estimation

Hadeel

Alsolai

et al.

201

9

Maintainabilit

y in Object

Oriented

Systems

Using

Ensemble

Methods

SDLC Validated

A review of the related literature shows that most efforts have

been put at the later phase of software development life cycle

especially at code level. If we can calculate the maintainability

at the near the beginning stages of the software development, the

price of the software can be reduced. A range of software quality

models are considered. After studying these models a

comparison table is made which give you an idea about the

various models and their uniqueness (Table 2). All models have

some characteristics like Portability, Usability, Modifiability,

Maintainability, etc. as marked in the Table 2.1. However here

International Journal of Innovative Research in Engineering & Management (IJIREM)

ISSN: 2350-0557, Volume-6, Issue-6, November 2019

www.ijirem.org

Copyright © 2019. Innovative Research Publications. All Rights Reserved 67

the main importance is given on maintainability characteristics

of software quality models for the reason that it is the factor

which have an effect on the software system the most.

6. SOFTWARE QUALITY MODELS

A variety of software quality models, like Dromey’s, McCall’s,

FURPS+ ISO/IEC- 2510 etc., are existing in which

maintainability is defined. Maintainability is evaluated by

various studies through several software quality sub

characteristics such as Testability, changeability, stability and

Maintainability.

Table 3: A comparison of four Quality Models and ISO/IEC- 2510

Approach

M
cC

a
ll

B
o

eh
m

D
ro

m
ey

F
U

R
P

S

IS
O

/I
E

C
-

2
5

1
0

Factors

Correctness  

Integrity   

Reusability   

Understandability 

Modularity  

Effectiveness    

Analyzability  

Maintainability     

Adaptability  

Modifiability   

Compatibility  

Testability  

Installability  

After the above discussion our conclusion is that maintainability

is a quality factor that attempts to predict how much effort will

be required for software maintenance. The goal of increasing the

maintainability of software is not just to detect defects but more

importantly, to detect defects as soon as they are introduced.

Consequently, reducing the cost and time to fix the bug and

producing higher quality maintainable software each build of the

release. In order to obtain consistent and correct quantification

of maintainability, it is advisable to recognize the factors that

affecting maintainability directly. Though, getting a universally

accepted set of maintainability factor is impossible, effort have

been made to identify the maintainability major contributors for

the same.

7. RELEVANT FINDINGS
After successful completion of the literature review a number of

important explanations can be enumerated as follows.

i. If we estimate the software maintainability at an early

stage that is design phase in the software development

process may significantly improve the software quality

and as well as client happiness, and decrease overall cost,

time and effort of rework.

ii. In order to reducing effort in measuring maintainability of

object oriented design we require to recognize a minimal

set of maintainability factors for object oriented

development procedure, which have optimistic impact on

maintainability quantification Object oriented software

characteristics are required to be recognized and after that

the set of maintainability metrics appropriate at the design

phase should be finalized.

iii. Further, maintainability metrics have to be chosen at the

design phase for the reason that metric selection is an

important step in maintainability Quantification of objects

oriented design.

8. CONTRIBUTION

The most important contribution of this paper is in the field of

maintainability quantification. We have accompanied an

organized review in this field. The dissimilar factors of

maintainability and quantification for these factors are

identified. Overall contribution is listed as follows:

Quantifying Maintainability of Object Oriented Design: An Organized Review

Copyright © 2019. Innovative Research Publications. All Rights Reserved 68

i. Systematic Literature Review

ii. A complete step by step improvement of the systematic

review procedure is described. It will help to further

study as a reference for undertaking SLR.

iii. Recognition of key papers related to the maintainability

study in software engineering domain

iv. Discovery of maintainability factors and quantification

in the recent domain of OOD

v. Identification and arrangement of different concepts

about the software maintainability in the present

software engineering domain.

vi. To propose a software maintainability framework to

assist the self-assessment for designers to identify

software maintainability factors.

vii. Structure and well defined assessment process for

finding factors from high level to lower measurable

level.

9. CONCLUSION
With growing complexity, pervasiveness and criticality of

software, building reliable and quality end software is becoming

more and more challenging. Moreover, the advancement in the

software development process has been accelerated drastically

in the last couple of decades. As a result, the complexity of

applications and environments has been substantially increased

and schedules have been pinched. Under these environments,

software quality inclines to agonize. In the face of intense

competitive pressure, a comprehensive and rational strategy to

achieve high maintainability will be a strategic advantage-not a

bottleneck. The foregoing analysis implies that maintainability

results from good Software Engineering practice and an

effective software process. A number of approaches have been

proposed in the literature for measuring software

maintainability. An investigation of the considerable literature

shows that greatest efforts have been place at the later stage of

software development life cycle. A resolution to modify the

design in order to improve maintainability after coding has

started is very costly and error-prone. After the above

conversation our conclusion is that maintainability is a quality

factor that attempts to calculate how much effort will be

required for software maintaining and to estimate the trouble of

causing a fault to outcome in a failure. The goal of increasing

the maintainability of software is not just to detect defects but

more importantly, to detect defects as soon as they are

introduced. Thus, reducing the cost and time to fix the bug and

producing higher quality maintainable software each build of the

release. After an exhaustive review process we found that

reducing effort in measuring maintainability of object oriented

design is must in order to deliver quality software within time

and budget.

REFERENCES
1. K.K. Aggarwal, Yogesh Singh. New Age International, Jan

1, 2005 - Software engineering.

2. Singh, Hardeep, and Aseem Kumar. "A Novel Approach to

Enhance the Maintainability of Object Oriented Software

Engineering During Component Based Software

Engineering." International Journal of Computer

Sci. and Mobile Computing 3.3 (2014): 778-786.

3. Al Dallal, Jehad. "Object-oriented class maintainability

prediction using internal quality attributes." Information

and Software Technology 55.11 (2013): 2028-2048.

4. Singh, Pradeep Kumar, and Om Prakash Sangwan. "Aspect

Oriented Software Metrics Based Maintainability

Assessment: Framework and Model." (2013): 1-07.

5. McCall, J.A., Richards, P.K., and Walters, G.F., (1977)

“Factors in Software Quality”, RADC TR-77 369, Vols I,

II, III, US Rome Air Development Center Reports

6. G. M. Berns. Assessing software maintainability.ACM

Communications, 27(1), 1984.

7. Bowen, T. P., Wigle, G. B., Tsai, J. T. 1985. Specification

of software quality attributes. Tech. Rep. RADC-TR- 85-

37, Rome Air Development Center.

8. Sneed, H., Mercy, A. (1985), Automated Software Quality

Assurance. IEEE Trans. Software Eng., 11Bi, 9: 909-916.

9. Grady, Robert, Caswell, Deborah (1987), Software Metrics:

Establishing a Company-wide Program. Prentic Hall. pp. p.

159.ISBN 0138218447.

10. Gill Geoffrey K. and Chris F. Kemerer. (1991).

“Cyclomatic Complexity Density and Software

Maintenance Productivity, “IEEE Transactions on Software

Engineering, Dec, pp.1284-1288.

11. P. Oman and J. Hagemeister, “Metrics for assessing a

software system's maintainability,” Software Maintenance,

1992, pp. 337 - 344.

12. W. Li and S. Henry, “Object-Oriented Metrics that Predict

Maintainability”, Journal of Systems and Software, vol 23,

no.2, 1993, pp.111-122.

13. D. Coleman, D. Ash, B. Lowther and P. Oman, “Using

Metrics to Evaluate Software System Maintainability”,

IEEE Computer; 27(8), pages 44–49, 1994.

14. Welker, K. and Oman, P.W., Software Maintainability

Metrics Models in Practice, CrossTalk, Nov./Dec.1995, pp.

19-23 and 32

15. Geoff R. Dromey's Model, (Feb 1995) (vol. 21 no. 2), IEEE

Transaction on Software Engineering, A Model for

Software Product Quality.

16. Dromey, R.G.: Concerning the Chimera. IEEE Software 13

(1), pp. 33--43 (1996).

17. S. Muthanna, K. Kontogiannis, K. Ponnambalaml and B.

Stacey, “A Maintainability Model for Industrial Software

Systems Using Design Level Metrics”, In Working

Conference on Reverse Engineering (WCRE’00), 2000

18. M. Genero, M. Piattini, E. Manso, G. Cantone, “Building

UML class diagram maintainability prediction models

based on early metrics”, Proceedings 5th International

Workshop on Enterprise Networking and Computing in

Healthcare Industry, , IEEE, 2003, pp. 263-275.

19. Hayes, J. Huffman, Mohamed, N., Gao, T. The Observe-

Mine-Adopt Model: An agile way to enhance software

maintainability. Journal of Software Maintenance and

Evolution: Research and Practice, Volume 15, Issue 5,

Pages 297 – 323, October 2003.

20. G. DiLucca, A. Fasolino, P. Tramontana, and C. Visaggio.

Towards the definition of a maintainability model for web

applications. In Proceeding of the 8th European Conference

on Software Maintenance and Reengineering, pages 279–

287. IEEE Computer Society Press, 2004.

21. Kiewkanya, M., Jindasawat, N., Muenchaisri, P., (2004) “A

Methodology for Constructing Maintainability Model of

Object-Oriented Design,” Proc. 4th International

Conference on Quality Software, 8 - 9 Sept., 2004, pp. 206

- 213. IEEE Computer Society.

22. Hayes J.H. and Zaho L (2005), “Maintainability Prediction

a Regression Analysis of Measures of Evolving Systems”,

International Journal of Innovative Research in Engineering & Management (IJIREM)

ISSN: 2350-0557, Volume-6, Issue-6, November 2019

www.ijirem.org

Copyright © 2019. Innovative Research Publications. All Rights Reserved 69

Proc.21st IEEE International Conference on Software

Maintenance, 26-29 Sept.2005, pp.601-604.

23. C.V. Koten, A.R. Gray, “An application of Bayesian

network for predicting object-oriented software

maintainability”, Information and Software Technology

Journal, vol: 48, no: 1, pp 59-67, Jan2006.

24. K.K. Aggarwal, Y. Singh, P. Chandra and M. Puri, “

Measurement of Software Maintainability Using a Fuzzy

Model”, Journal of Computer Sciences, vol. 1, no.4, pp.

538-542, 2005 ISSN 1549-3636 © 2005 Science

Publications.

25. K. K. Aggarwal, Y. Singh, A. Kaur and R. Malhotra,

“Application of Artificial Neural Network for Predicting

Maintainability using Object-Oriented Metrics, World

Academy of Science, pp. 140-144, 2006.

26. Sub has Chandra Misra, “Modeling Design/Coding Factors

That Drive Maintainability of Software Systems”, Software

Quality Journal, 13, pages 297- 320, 2005.

27. Y. Zhou and H. Leung, "Predicting object-oriented

software maintainability using multivariate adaptive

regression splines”, Journal of Systems and Software, vol.

80, no. 8, pp. 1349- 1361, 2007

28. Wang Li-Jin Hu Xin-Xin Ning Zheng-Yuan Ke Wen-Hua

,“Predicting Object-Oriented Software Maintainability

Using Projection Pursuit Regression.”, Proceedings of the

2005 International Conference on Software Engineering

Research and Practice, SERP ,vol.2,pp.942-946.

29. MO. Elish and KO. Elish, “Application of TreeNet in

Predicting Object-Oriented Software Maintainability: A

Comparative Study”, European Conference on Software

Maintenance and Reengineering, pp 1534-5351, March

2009, DOI 10.1109/CSMR.2009.57.

30. Rizvi S.W.A. and Khan R.A. (2010)

“Maintainability Estimation Model for Object-Oriented

Software in Design Phase (MEMOOD)”, Journal of

Computing, Volume 2, Issue 4, April 2010,

31. Malhotra et.al, Software Maintainability Prediction using

Machine Learning Algorithms.” Software Engineering: An

International Journal (SEIJ), Vol. 2, No. 2, SEPTEMBER

2012

32. Celia Chen , Alfayez R ,Kamonphop Srisopha and Lin Shi,

Why Is It Important to Measure Maintainability and What

Are the Best Ways to Do It?, IEEE/ACM 39th

33. International Conference on Software Engineering

Companion (ICSE-C), July 2017.

34. C Jin , A. L. Jin , “Applications of Support Vector Machine

and Unsupervised Learning for Predicting Maintainability

using Object- Oriented Metrics”, Second International

Conference on Multi Media and Information Technology ,

vol 1 ,no : 1, pp 24-27, April 2010.

35. Gautam C, kang S.S (2011), “Comparison and

Implementation of Compound MEMOOD MODEL and

MEMOOD MODEL”, International journal of computer

science and information technologies, pp 2394-2398.

36. Malhotra et al. “Software Maintainability Prediction using

Machine Learning Algorithms.” Software Engineering: An

International Journal (SEIJ), Vol. 2, No. 2, SEPTEMBER

2012

37. Alisara Hincheeranan and Wanchai Rivepiboon,” A

Maintainability Estimation Model and Tool.” International

Journal of Computer and Communication Engineering,

Vol. 1, No. 2, July 2012.

38. Dubey et.al.”Maintainability Prediction of Object Oriented

Software System by Using Artificial Neural Network

Approach.” International Journal of Soft Computing and

Engineering (IJSCE) ISSN: 2231-2307, Volume-2, Issue-2,

May 2012.

39. Laxmi Shanker Maurya et.al,” Maintainability assessment

of web based application.’’, Journal of Global Research in

Computer Science, Vol 3, No. 7, July 2012.

40. Rajendra Kumar and Dhanda N, Maintainability

Measurement Model for Object-Oriented Design,

International Journal of Advanced Research in Computer

and Communication Engineering, Vol. 4, Issue 5, May

2015.

41. McCall, J.A., Richards, P.K., and Walters, G.F., (1977)

“Factors in Software Quality”, RADC TR-77-369, Vols

I, II, III, US Rome Air Development Center Reports.

42. Boehm, B. W., Brown, J. R., Kaspar, H., Lipow, M.,

McLeod, G., and Merritt, M., (1978) Characteristics of

Software Quality, North Holland.

43. ISO 9126-1 Software Engineering - Product Quality - Part

1: Quality Model, 2001.

44. Grady, Robert, Caswell, Deborah (1987), Software Metrics:

Establishing a Company- wide Program. Prentice

Hall. pp. p. 159. ISBN 0138218447.

45. Sneed, H., Mercy, A. (1985), Automated Software Quality

Assurance. IEEE Trans. Software Eng., 11Bi, 9: 909-916.

46. Sommerville, I. (1992). Software Engineering. 4th ed. New

York, Addison- Wesley.

47. Hordijk, Wiebe, and Roel Wieringa. "Surveying the factors

that influence maintainability: research design." ACM

SIGSOFT Software Engineering Notes. Vol. 30. No.

5. ACM, 2005.

48. Larrucea X., Santamaria I., O'Connor R., Messnarz R. (eds)

Systems, Software and Services Process Improvement.

EuroSPI 2018. Communications in Computer and

Information Science, Vol 896, pp. 492-503. Springer,

Cham.

