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ABSTRACT- This Paper proposes a data-driven 

approach for grid loss prediction in power systems. It 

utilizes a comprehensive dataset with relevant features 

such as grid load, temperature forecasts, and calendar data. 

The dataset is pre-processed by handling missing values, 

normalizing features, and encoding cyclic calendar 

features. A Long Short-Term Memory (LSTM) recurrent 

neural network is employed for the prediction model, 
capturing temporal dependencies and generating forecasts 

of grid loss two hours ahead. The model is trained using 

mean absolute error (MAE) as the loss function and 

optimized through hyperparameter tuning. Evaluation 

metrics like MAE and root mean squared error (RMSE) 

assess the model's accuracy. Visualization techniques 

compare predicted and actual grid loss values. The Paper 

concludes with analysis, future research suggestions, and 

highlights the potential of the Prophet data-driven 

approach for efficient and reliable power distribution. 

KEYWORDS-  Loss prediction, power loss, LSTM, 

prophet model 

I. INTRODUCTION 

With the increasing integration of renewable energy 

sources in the electricity markets worldwide, the dynamics 

of power grid operations are undergoing significant 

changes. These changes pose challenges for accurately 

predicting grid losses, particularly as existing methods 
often struggle to incorporate local weather conditions into 

their models. In the context of India, with its diverse 

climate and complex grid infrastructure, reliable power 

grid loss prediction becomes even more critical.[1] 

The background of this Paper lies in the need to address 

the limitations of current prediction methods and develop 

a more robust approach that considers local weather 

conditions. The accurate prediction of power grid losses is 

crucial for grid operators, utility providers, and 

policymakers to effectively plan and optimize grid 

operations, reduce losses, and enhance energy efficiency. 

Additionally, accurate predictions enable proactive 

maintenance planning, resource allocation, and cost 

optimization.[2] 

The motivation for this Paper stems from the potential of 

Long Short-Term Memory (LSTM) recurrent neural 

network models to overcome the shortcomings of 

traditional methods. LSTM models have demonstrated 
their effectiveness in capturing long-term relationships and 

temporal dependencies in time series data, making them 

suitable for power grid loss prediction. By incorporating 

hourly time series data from electricity markets, local 

weather conditions, and the calendar, LSTM models can 

better capture the complex dynamics of grid losses, 

especially in the context of the Indian power grid. 
The unique characteristics of the Indian power grid, 

including its vast geographical spread, diverse climatic 

zones, and evolving renewable energy landscape, require 

tailored prediction models. By developing an LSTM-based 

predictive model specifically for the Indian context, this 

Paper aims to contribute to the advancement of grid loss 

prediction capabilities in India. Accurate and localized 

predictions can empower grid operators to take proactive 

measures to mitigate losses, improve grid stability, and 

optimize resource allocation.[3] 

Furthermore, this research aligns with the increasing 

emphasis on renewable energy integration and grid 

modernization efforts in India. As the country strives to 

expand its renewable energy capacity and enhance grid 

reliability, accurate power grid loss prediction becomes 

even more critical. By leveraging LSTM models and 

considering local weather conditions, this Paper seeks to 
address the specific challenges faced by the Indian power 

grid and provide practical insights and recommendations 

for improved grid loss prediction.[4] 

Overall, the background and motivation for this Paper lie 

in the significance of accurate power grid loss prediction 

in India, the limitations of existing methods, and the 

potential benefits of leveraging LSTM neural networks to 

address these challenges. By developing an advanced 

predictive model, this research aims to contribute to the 

enhancement of grid reliability, efficiency, and 

sustainability in India's evolving energy landscape.[5] 

II. LITERATURE REVIEW 

"Power Loss Analysis and Estimation in Power 

Transmission Systems" by S. G. Srivani and B. V. Sanker 

Ram [6] Srivani and Sanker Ram present a detailed 

analysis of power loss in power transmission systems. The 

authors investigate the factors that contribute to power 

losses in transmission lines, including line resistance, 

reactance, and load characteristics. They discuss various 

loss estimation techniques, such as the use of power flow 

analysis and mathematical models. The paper emphasizes 
the significance of accurate loss estimation for assessing 

system efficiency and optimizing transmission network 

design. Moreover, the authors highlight the impact of 
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power loss on system stability and the economic operation 

of power grids. The comprehensive coverage of power loss 

analysis in transmission systems provided in this work 

serves as a valuable resource for researchers and 

practitioners in the field of power system engineering. 

"Power Losses in Power Systems: An Overview" by S. 

Chatterjee and B. Gupta: Chatterjee and Gupta  [7] present 

a comprehensive overview of power losses in power 

systems, encompassing both transmission and distribution 

networks. The authors provide insights into the sources of 
power losses, including resistive losses in conductors, 

losses in transformers, and losses due to reactive power 

flow. They discuss the various methods employed for 

estimating power losses, ranging from basic calculation 

approaches to more advanced modeling techniques. The 

paper highlights the importance of accurate loss estimation 

in assessing system performance, optimizing operation, 

and implementing energy-saving measures. Furthermore, 

the authors shed light on the economic implications of 

power loss and the potential benefits of loss reduction 

strategies. This comprehensive overview offers a valuable 

foundation for understanding power loss phenomena and 

their impact on power system operation and efficiency. 

III. OBJECTIVES 

 To develop a predictive model for power loss in grids 

using LSTM, incorporating historical measurements of 

grid load, temperature forecasts, and predictions from 

the Prophet model. 

 To investigate the relationship between grid load, 

temperature, and the components of the Prophet model 

(trend, daily, weekly, and yearly) in predicting grid loss 

accurately. 

 To incorporate the cyclic nature of calendar features 

into the LSTM model architecture for improved 

prediction performance. 

 To evaluate the effectiveness of the Prophet LSTM 
model in predicting power loss for three grids in 

Norway with varying data availability and grid 

characteristics. 

 To compare and analyze the performance of the LSTM 

model in predicting power loss against alternative 

prediction methods and traditional approaches 

IV. METHODOLOGY 

The chosen model for our application is the Long Short-

Term Memory (LSTM) recurrent neural network. LSTM 

is widely utilized in various fields such as text and 

language processing, as well as time-series modeling. It 

stands out due to its ability to handle sequential data and 

capture complex, non-linear relationships that evolve over 

time. Figure 1 shows the prophet model.  

Figure 1: Prophet Model 

Our proposed Prophet model is specifically tailored for 

forecasting total grid losses in an intra-day market, like the 

Norway market. In this market, there is a lead time of two 

hours between the forecasting moment and the forecasting 

horizon, as the gate closes one hour before the traded hour. 

To address this, our model is designed to predict grid losses 

two hours ahead with a one-hour forecasting horizon. This 
allows the model to be updated and run every hour, 

utilizing up-to-date weather forecasts to provide accurate 

forecasts for the market two hours in advance [8]. 

The computational graph of our model processes a 

sequence of 70 past observations (x1, x2, ..., xt-1, xt), as 

well as one- and two-hour ahead forecasts (x^t+1, x^t+2), 

which are the 54 selected variables used as inputs to the 

model. 

At each step of processing, the recurrent neural network 

(RNN) updates its hidden states (h) and passes them as 

inputs to the next iteration. In the final processing step, the 

hidden states are combined linearly to compute the model 

output, which is desired to closely approximate the 
predicted grid loss (y^t+2) two hours ahead. To evaluate 

the performance of the model, we utilize the mean absolute 

error (MAE) as the loss function. 

The MAE is calculated by taking the average absolute 

difference between the predicted grid loss (y^τ) and the 
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true value (yτ) at each time step τ, as shown in Equation 

(1) presented below: 

MAE = (1 / T) * Σ|y^τ - yτ| (1) 

In this equation, y^τ represents the predicted grid loss, and 

yτ represents the true value of the grid loss at time τ. The 

mean absolute error is chosen as the loss function due to 

its robustness in handling potential outliers and providing 

a reliable measure of prediction accuracy [9]. 

A. Dataset Description 

The dataset in question focuses on the complex power grid 
system, which plays a vital role in transmitting electricity 

from producers to consumers. However, not all the 

electricity generated reaches its intended destination due to 

losses that occur during the transmission and distribution 

processes. In Norway, grid companies are responsible for 

reporting these grid losses to the authorities overseeing the 

national transmission networks. Forecasting the 

anticipated grid losses a day in advance is crucial for 

determining electricity prices [10]. 

Although the underlying principles governing grid losses 

are well understood, their calculation is not straightforward 

due to the dynamic and uncertain nature of these losses. 

The dataset contains various features that are considered 

relevant for accurately predicting grid loss. It provides 

hourly measurements of these important features. 

Specifically, for each grid, the dataset includes the 

following information:: 

The dataset contains detailed historical measurements of 
grid loss, representing the electricity lost during 

transmission and distribution processes, measured in 

megawatt-hours (MWh). Additionally, it includes 

measurements of grid load, which represents the total 

power within the grid, also in MWh. 

The dataset also provides temperature forecasts expressed 

in Kelvin. Temperature has a significant impact on power 

consumption, and therefore, it influences the grid load and 

subsequently affects grid loss. 

Moreover, the dataset includes predictions obtained from 

an alternative forecasting model, which are presented in 

MWh. These predictions can be valuable additional 

features in predicting grid loss accurately. 

Furthermore, the alternative forecasting model generates 

distinct components, including trend, daily, weekly, and 

yearly patterns associated with grid loss. These 

components derived from the alternative model can serve 
as important features within the prediction model, 

enhancing its ability to forecast grid loss effectively. 

The dataset used in this study includes various grid-

specific features as well as cyclic calendar features. These 

calendar features capture important time-based attributes 

such as year, season, month, week, weekday, and hour. To 

accurately represent the cyclic nature of time, these 

features are encoded using cosine and sine functions. 

Additionally, the dataset indicates whether a specific time 

period corresponds to a holiday. 

It's worth noting that Grid 3 has a smaller amount of 

training data compared to Grid 1 and Grid 2. This 

difference in data availability suggests potential variations 

and disparities in historical data accessibility for each grid. 

The data for this study was sourced from the Norway 

transmission system operator. It encompasses different 

types of information, including historical hourly electricity 
market data, local weather data, calendar data, and data 

specific to the power grid system under investigation. A 

careful selection process was carried out, resulting in 54 

variables with sufficient availability and satisfactory data 

quality. 

The electricity market data includes metrics such as 

electricity demand, wind power generation, and physical 

flows from different regions. The calendar data consists of 

indicators for weekdays, public holidays, and years, 

encoded in a one-hot format. A two-dimensional sine-

cosine representation of the daily cycle is also included. 

The power-grid data includes the aggregate grid loss with 

a 24-hour delay, a moving average of the aggregate grid 

loss with a 24-hour delay, and electricity flow between 

different parts of the grid system with a 2-hour lag. These 

variables were chosen based on their availability in real-

time operation. 

The data covers the period from 2011 to 2019 and is 
divided into three segments: training, validation, and 

testing. The training dataset spans 6 years, the validation 

dataset covers 1 year, and the testing dataset also 

encompasses 1 year. Prior to inputting the data into the 

model, a quantile transformation is performed to convert 

the features into a uniform distribution ranging from 0 to 

1. The target values used for the model outputs are scaled 

to have a mean of zero and a standard deviation of one [11]. 

B.  Data Pre-processing and Feature Engineering  

In the process of preparing the dataset for predictive 

modelling, several data pre-processing and feature 

engineering steps are employed to ensure the data is in a 

suitable format and to extract meaningful features. The 

following techniques can be applied: 

Firstly, missing values in the dataset, particularly in the 

grid-specific features, are identified. The appropriate 

strategy to handle missing values is chosen based on their 
extent. This may involve removing rows or columns with 

insignificant missing values, imputing missing values 

using methods like mean, median, or interpolation, or 

employing advanced imputation techniques such as 

regression imputation or multiple imputation as shown in 

figure 2  
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Figure 2: Primary electrical system in Norway above 110 kv, including electric power plants,  

transmission buses, converting stations, and user loads.

Finally, the pre-processed dataset is split into training and 

testing sets. The training set covers a significant period to 

allow the model to learn patterns and relationships, while 

the testing set is used to evaluate the model's performance 

on unseen data. 

By following these data pre-processing and feature 
engineering steps, the dataset can be transformed into a 

suitable format for training a predictive model that 

accurately forecasts grid loss 

C. LSTM Architecture  

The Long Short-Term Memory (LSTM) is a specialized 

type of recurrent neural network (RNN) architecture that 

excels in capturing long-term dependencies in sequential 

data. Unlike traditional RNNs, LSTM networks overcome 

the issue of vanishing gradients, enabling them to retain 

and utilize information from earlier sequences more 

effectively. 

The LSTM architecture as shown in figure 3 comprises a 

unique memory unit called the cell state (Ct) and three 

types of gates: the forget gate (ft), the input gate (it), and 

the output gate (ot). These gates play a crucial role in 
controlling the information flow within the LSTM cell, 

allowing it to selectively remember or forget information 

from previous time steps. 

The forget gate evaluates the significance of the 

information stored in the previous cell state. It takes inputs 

from the previous hidden state (ht-1) and the current input 

(xt) and generates a forget gate activation (ft) ranging 

between 0 and 1. A value of 0 signifies complete 

forgetting, indicating that the LSTM cell should discard all 

previous information. Conversely, a value of 1 signifies 

retaining all information for future use.. 

 

Figure 3: LSTM Architecture 

D. Input Sequence 

The LSTM architecture is designed to process sequential 

data, where each data point represents a specific time step. 

This could be any type of sequential data, such as text, 

audio, or numerical values. The input sequence is 

structured as a matrix, where the rows represent different 

time steps, and the columns represent the various features 

or dimensions of the data. 

Within the LSTM cell, there are several key components 

that work together to process the input sequence. These 
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components include the cell state, input gate, forget gate, 

output gate, and hidden state. The input gate determines 

which new information should be stored in the current cell 

state, allowing the LSTM to selectively incorporate 

relevant information. The forget gate decides which 

information from the previous time step should be 

discarded, ensuring that the LSTM focuses on the most 

important aspects of the sequence. The output gate 

regulates the influence of the current hidden state on the 

final output, enabling the LSTM to capture and retain the 
most relevant information for prediction or classification 

tasks. 

E. LSTM Cell 

The LSTM cell utilizes three types of gates, namely input 

gates (it), forget gates (ft), and output gates (ot), to regulate 

the flow of information within and outside the cell state. 

These gates employ sigmoid activation functions, which 

generate values ranging from 0 to 1. 

The input gate (it) assesses the relevance of the current 

input (xt) and the previous hidden state (ht-1) in relation to 

power loss prediction. By computing an activation value, 

the input gate determines how much of the candidate cell 

state (C~t) should be incorporated into the cell state (Ct) at 

the given time step. 

The forget gate (ft) governs whether the previous cell state 

(Ct-1) should be retained or forgotten. It takes into account 

the previous hidden state (ht-1) and the current input (xt), 

generating an activation value. This value is multiplied 
element-wise with the previous cell state, enabling the 

LSTM cell to selectively preserve or discard information.. 

F. Hidden State 

In an LSTM model, the hidden state acts as a memory and 

learned representation of the input sequence. It 

encapsulates the information and patterns extracted by the 

LSTM cell from the sequential data. The hidden state is not 

only utilized within the LSTM cell itself but also plays a 

crucial role in generating predictions and transmitting 

information to subsequent time steps or other model layers. 

Following each time step, the LSTM cell updates its 

hidden state (ht) based on the current input (xt) and the 

previous hidden state (ht-1). This update process involves 

the activation of input gates, forget gates, and output gates, 

which control the flow of information and determine the 

relevance of the input and previous hidden state. 

The hidden state (ht) serves various purposes. In 
subsequent time steps, the hidden state from the previous 

step (ht-1) is fed as input to the current LSTM cell, 

allowing the model to build upon the knowledge it has 

accumulated thus far. This recurrent nature empowers the 

LSTM model to capture long-term dependencies and retain 

memory of relevant patterns over extended sequences. 

Overall, the hidden state in an LSTM model plays a vital 

role in connecting time steps, capturing and preserving the 

learned information from the input sequence. It enables the 

model to make predictions, build upon past knowledge, 

and provide valuable representations for different 

downstream tasks. Leveraging the hidden state enhances 

the LSTM model's capacity to capture temporal 

dependencies and extract meaningful insights from 

sequential data, making it a powerful tool in power loss 

prediction and other time series applications.. 

G. Multiple LSTM Layers  

Stacking multiple LSTM layers in an architecture enhances 

the model's ability to learn complex patterns and 

dependencies in the data. Each layer in the stack builds 

upon the representations learned by the previous layer, 

creating a hierarchical structure that captures increasingly 

abstract information. 

In a multi-layer LSTM architecture, the output of one 

LSTM layer serves as the input to the next layer. This 

sequential flow of information allows the model to learn 

representations at different levels of abstraction. Each 

layer focuses on capturing specific temporal patterns and 

relationships, leveraging the knowledge acquired by the 

previous layers. 

The bottom layer of the stacked LSTM architecture 

receives the input sequence, which represents historical 
observations of power loss. Using its LSTM cell and gating 

mechanisms, this layer processes the input and generates a 

hidden state. This hidden state is then passed to the next 

layer, which performs a similar operation. This process 

continues through each layer until reaching the top layer, 

which produces the final hidden state representation. 

By stacking multiple LSTM layers, the model becomes 

more adept at capturing intricate temporal patterns and can 

effectively learn complex relationships in the data. This 

hierarchical approach allows for improved representation 

learning and enhances the model's prediction capabilities 

for power loss... 

H. Dense Layers and Output 

After the LSTM layers in the model architecture, 

additional dense layers can be incorporated. These dense 

layers act as supplementary processing units that further 

refine and transform the features extracted by the LSTM 
layers. Comprising interconnected neurons, dense layers 

apply non-linear transformations to the input data. 

The purpose of integrating dense layers following the 

LSTM layers is to enhance the model's ability to capture 

higher-level representations and intricate patterns within 

the input data. These layers are capable of learning and 

extracting more abstract features that are pertinent to the 

specific prediction task at hand. For instance, they can aid 

in classifying power loss incidents, predicting the 

magnitude of power loss, or generating a sequence of 

future power loss values. 

I. Training 

The training of the LSTM architecture, like other neural 

network models, involves optimizing its parameters to 

enhance its predictive capabilities. This training process 

utilizes labeled or unlabeled data, depending on the 

specific task. 

For supervised learning tasks like power loss prediction, 
the LSTM architecture is trained using labeled data, where 

each input sequence is associated with a corresponding 

target output. The training dataset consists of historical 

observations of power loss and their corresponding true 

values. 

During training, the LSTM model iteratively adjusts its 

internal parameters to minimize a defined loss function. 

This loss function quantifies the disparity between the 

predicted output values and the true target values. 

Common loss functions for regression tasks, such as power 

loss prediction, include mean squared error (MSE) and 
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mean absolute error (MAE), which measure the average 

squared or absolute difference between predicted and true 

values. 

Through this iterative training process, the LSTM 

architecture learns to capture the intricate temporal 

dependencies and patterns present in the power loss data. 

By minimizing the loss function and updating its 

parameters, the model progressively enhances its ability to 

make accurate predictions on unseen data. 

It is important to note that the training process of the LSTM 
architecture requires careful consideration of 

hyperparameters, such as the learning rate, batch size, and 

number of epochs. These hyperparameters impact the 

convergence speed and the quality of the trained model. 

Proper tuning of these hyperparameters is crucial to ensure 

optimal performance. 

J. Prediction 

Once the LSTM model is trained, it can be deployed for 

making predictions on new, unseen data. The model takes 

an input sequence and propagates it through the LSTM 

layers, producing the predicted output based on the learned 

patterns and dependencies captured during training. 

V. RESULTS AND DISCUSSION 

From the below graphs, we can interpret the following: 

Time and Date: The "Unnamed: 0" column represents the 

date and time of the data entries. In this case, the data 

seems to be from December 1, 2019, with timestamps 

ranging from 00:00:00 to 04:00:00. 

Demand: The "demand" column provides the recorded 

demand values at each specific date and time. The values 

range from 288.46 to 314.40. These values represent the 
energy demand during the corresponding time intervals. 

Grid Load and Grid Loss: The "grid1-load" column 

indicates the load on grid1, which ranges from 392.90 to 

407.68. The "grid1-loss" column represents the loss on 

grid1, with values ranging from 20.25 to 21.55. Higher 

load and loss values may indicate increased energy 

consumption and potential inefficiencies in the grid 

system. 

Prophet Model: The columns "grid1-loss-prophet-daily," 

"grid1-loss-prophet-pred," "grid1-loss-prophet-trend," 

"grid1-loss-prophet-weekly," and "grid1-loss-prophet-

yearly" correspond to predictions or trends generated by 

the Prophet model. These columns provide additional 

information about grid1 loss based on the specific 

forecasting model utilized. 

Temperature: The "grid1-temp" column indicates the 

temperature data associated with each date and time. The 

temperature values range from 273.05 to 273.35. 
Time-related Features: The columns "month," "monthly," 

"week," "weekly," "weekday," "weekday," "holiday," 

"hour," and "hourly" represent various time-related 

features. These features might be encoded values 

indicating specific characteristics associated with each 

date and time, such as the month, week, weekday, holiday 

status, and hour. 

Incorrect Data: The "has incorrect data" column indicates 

whether the data in each row is flagged as incorrect or 

problematic. In this case, all the data entries are marked as 

"False," suggesting that there are no identified issues with 

the data quality. Training and testing accuracy can be seen 

in figure 4. Predicted loss and actual loss on test set for 

next 36 hours can be seen in figure 5.  prediction of energy 

loss for '2019-12-06', '2019-12-13' is shown in figure 6. 

Figure 7 shows prediction testing over the years from 

'2020-01-15', '2020-01- .  prediction testing over the years 

from '2017-01-27'. '2020-06-03' can be seen in figure 8.  

 

Figure 4: Training and testing accuracy 

 

Figure 5: Predicted loss and actual loss on test set for next 36 hours.  
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Figure 6: prediction of energy loss for '2019-12-06', 

'2019-12-13' 

 

Figure 7: prediction testing over the years from '2020-01-

15', '2020-01- 

 

Figure 8: prediction testing over the years from '2017-01-

27', '2020-06-03' 

 

Figure 9: Plot per column distribution 

 

Figure 10: Correlation matrix for test 

 

Figure 11: Scatter and Diversity plot 

 

Figure 12: Plot per column 
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Figure 13: Correlation matrix for test backfilled missing 

data 

Plot per column distribution can be seen from figure 9. 

Correlation matrix for test is shown in figure 10. Scatter 

and diversity plot is shown in figure 11 and plot per column 

can be seen in figure 12. In figure 13 Correlation matrix 

for test backfilled missing data is explained.   The graphs 

represents various data points related to demand, grid load, 

grid loss, temperature, and other factors. Each row 

corresponds to a specific date and time. The "Unnamed: 0" 

column represents the date and time of the data entry. The 

"demand" column shows the recorded demand value at that 

specific date and time. The "grid1-load" column indicates 

the load on grid1, while the "grid1-loss" column represents 

the loss on grid1. 

The data  includes several columns related to a forecasting 

model called "Prophet," including "grid1-loss-prophet-

daily," "grid1-loss-prophet-pred," "grid1-loss-prophet-

trend," "grid1-loss-prophet-weekly," and "grid1-loss-
prophet-yearly." These columns likely contain predictions 

or trends calculated by the Prophet model for grid1's loss. 

Additional columns such as "grid1-temp" suggest the 

inclusion of temperature data. The table also contains 

columns related to time information, such as "month," 

"monthly," "week," "weekly," "weekday," "weekday," 

"holiday," "hour," and "hourly." These columns likely 

represent different time-related features or attributes 

associated with the date and time of the data entry. 

The last column "has incorrect data" indicates whether the 

data in that row is flagged as incorrect or problematic. In 

summary, the table provides specific details about demand, 

grid load, grid loss, temperature, time-related features, and 

the accuracy of the data entries. Scatter and diversity plot 

can be seen in Figure 14.  

 

Figure 14: Scatter and diversity plot 

VI. CONCLUSION 

In summary, the Paper dataset contains hourly values of 

various features relevant to predicting grid loss. These 

features include grid loss measurements, grid load 

measurements, temperature forecasts, predictions from the 

Prophet model, and components of grid loss trends derived 

from the Prophet model. The dataset also includes calendar 

features such as year, season, month, week, weekday, hour, 

and holiday indicators. Additionally, the dataset provides 

estimated electricity demand for Trondheim. 

The dataset is split into a training set and a test set. The 

training set spans two years, from December 2017 to 

November 2019, and includes all the aforementioned 
features. The test set covers six months, from December 

2019 to May 2020, and contains the same features as the 

training set, with some occasional missing values. An 

additional version of the test dataset is provided, where the 

missing features are filled in using backfilling. 

It is important to consider the cyclic nature of the calendar 

features. Representing weekdays as simple numbers from 

0 to 6 does not reflect their proximity to each other. To 

address this, cyclic calendar features were created using 

cosine and sine functions. This ensures that the highest and 

lowest values of the features are positioned close to each 

other in the feature space. Although demand estimates are 

not available for all grids, predictions for Trondheim, the 

largest nearby city, were used as a substitute. Additionally, 

since grid load is directly proportional to grid loss, 

historical load measurements were predicted and included 

as a feature for grid loss prediction. While the Prophet 
model did not perform well as a standalone prediction tool 

for the dataset, it proved valuable for incorporating its 

predictions and other components as features in the model. 

It is worth noting that Grid 3 has less training data 

compared to Grid 1 and Grid 2. This imbalance should be 

taken into consideration during the development and 

evaluation of the predictive model. 

 



 

International Journal of Innovative Research in Engineering and Management (IJIREM) 

Innovative Research Publication 85 

 

CONFLICTS OF INTEREST 

The authors declare that they have no conflicts of interest. 

REFERENCES 

[1] Electric power transmission and distribution losses, 2018, 

Accessed: 2020-03-05. Available at 
https://data.worldbank.org/.  

[2]  J. Sahlin, R. Eriksson, T. Ali, M. Ghandhari, Transmission 

line loss prediction based on linear regression and exchange 

flow modelling, 2017 IEEE Manchester PowerTech, 
(2017), pp. 1–6.  

[3]  L. Tian, Q. Wang, A. Cao, Research on SVM line loss rate 

prediction based on heuristic algorithm, Appl. Mech. Mat. 
291–294 (2013) 2164–2168.  

[4]  P. Nallagownden, T. Hong, Development of a new loss 

prediction method in a deregulated power market using 

proportional sharing, 2011 5th International Power 
Engineering and Optimization Conference, PEOCO 2011 - 

Program and Abstracts, (2011).  

[5] W. Liu, T. Zeng, T. Jun, L. Guan, B. Li, Research on 

electric power with development and application of line 
loss rate forecasting software based on MLRM-GM, Adv. 

Mat. Res. 977 (2014) 182–185.  

[6] S. Appalasamy, H.-S. Gan, O. Jones, N. Moin, C.S. Tan, 

Transmission loss modelling and analysis with multiple 
linear regression, in Proceedings of the 20th International 

Congress on Modelling and Simulation. Adelaide, 

Australia: MODSIM2013, December 2013.  

[7]  Y. Ren, X. Zhang, X. Huang, Study on the prediction of 
line loss rate based on the improved RBF neural network, 

Adv. Mat. Res. 915–916 (2014) 1292–1295.  

[8] F. Xie, B. Zhou, Q. Zhang, L. Jiang, Line loss rate 

forecasting based on grey model and combination of neural 
network, Adv. Mat. Res. 621 (2012) 340–343.  

[9] S. Bouktif, A. Fiaz, A. Ouni, M. Serhani, Optimal deep 

learning LSTM model for electric load forecasting using 

feature selection and genetic algorithm: comparison with 
machine learning approaches, Energies 11 (2018) 1636.  

[10]  R. Agrawal, F. Muchahary, M. Tripathi, Long term load 

forecasting with hourly predictions based on long-short-

term-memory networks, 2018 IEEE Texas Power and 
Energy Conference (TPEC), 2018, pp. 1–6.  

[11]   Q. Xiaoyun, K. Xiaoning, Z. Chao, J. Shuai, M. Xiuda, 

Short-term prediction of wind power based on deep long 

short-term memory, 2016 IEEE PES Asia-Pacific Power 
and Energy Engineering Conference (APPEEC), (2016), 

pp. 1148–1152. 

 

https://data.worldbank.org/

	A. Dataset Description
	B.  Data Pre-processing and Feature Engineering
	C. LSTM Architecture
	D. Input Sequence
	E. LSTM Cell
	F. Hidden State
	G. Multiple LSTM Layers
	H. Dense Layers and Output
	I. Training
	J. Prediction

