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ABSTRACT  

 Efficient Numerical methods for series summation to 
high decimal places of accuracy can be found 
elsewhere.  However, most of these methods can’t 
sum  many  types of special series  exactly because 
either of rounding's errors or these methods sometimes 
fail to compute slowly convergent series as in [1] . In 
this paper , We shall describe an approach that can be 
applied to sum some special  types of series exactly 
whenever these special series can be emerged and suit 
our criterion method . Our  method  actually uses two 
approaches for expressing functions  as series of 
Chebyshev polynomials approximation .The first 
approach is Taylor's Expansion Series where each 
mononomial     xn n=0,1,2,3,…. in Taylor's series is 
replaced and represented by its corresponding 
Chebyshev identity .The second approach is 
Cheybeshev Approximation Series for a particular 
function . Depending on this particular function, We 
compare the corresponding coefficients associated 
with Tj(x) j=0,1,2,3,….. between the two series. Each 
coefficient in first approach emerge and generate an 
infinite series with   its  sum exactly equals the 
corresponding coefficient in the second expansion.  
             The particular function that We shall consider 
to be expressed  first in Taylor's Method and second in  
Chebyshev Series  to emerge the many infinite series 
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each with its exact sum are given by Eqn.(1)   
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 Alternatively, Eqn.(1)   can be  rewritten as 
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 Eqn.(2)  shows infinite formulae series that  
represents the reciprocal  of odd  numbers. 

 

Keywords 
Chebyshev polynomials, Taylor's Expansion, 
Binomial coefficient, chebyshev polynomials, Levin's 
Transform 
 

1. THE VALIDITY OPINION FOR 
EXACT SUMMATION  

Many infinite series having an exact summation 
can be found and evaluated it. 
     Here , for demonstration ,We list two  infinite 
series ,each with its  exact sum that can be 
evaluated easily . These series are in Eqn.(3) and 
Eqn.(4) 
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We show the sum of the infinite series in Eqn.(3) is  
exactly equals one . Consider 
its partial sum Sn that can be expressed as 
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       Observe that all the terms vanish with each other 
except the first and the last terms.  
   This implies  that  
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  This shows that the infinite series in Eqn.(3) 
 converges and its sum equals one , i.e. 
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   Similarly, We can show ,  another infinite series  in 

Eqn.(4)  has  its sum equals 
2


 

             and   it is  given by        
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This demonstrates that there are so many infinite series where  
each converges exactly to its sum without the need  for seeking 
some numerical methods to to compute it. Such types of series 
can be useful  for many applications. 
 

2. THE ORTHOGONALITY AND THE 
FUNDAMENTAL IDENTITIES FOR 
 CHEBYSHEV POLYNOMIALS 
           The Chebyshev polynomials of the first kind 
are defined through the identity  

)5()1coscos()( xnxnT
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      Now substitute x= getto)cos(  

)cos())(cos(  nnT      (6) 

        Hence, the first few Chebyshev polynomials of 
the first kind are  
                      To(x) = 1 
                      T1(x) = x     
                     T2(x) = 2x2 – 1 
                     T3(x) = 4x3 – 3x 

                    T4(x) = 8x4 – 8x2 + 1   

T5(x) = 16x5 – 20x3 + 5x 

                  T6(x) = 32x6 – 48x4 + 18x2 – 1 
       The next identity expressed without proof is the 
expansion of Chebyshev polynomials Tn(x) as 

successive powers in x , where n is a positive integer 
  

           Tn(x) = 


r

j 0
αj x n-2j     (7)                            

where the coefficients α's are determined by 
α0 = 2 n-1 

                  and  
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for j = 1 (1) r and r = [n ∕ 2] is the integer 

part of n ∕ 2 .Where C
jn

j
1
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  is the  

corresponding Binomial coefficient. For an alternative 
expression of Eqn. (7), see [3]. 
       The third  well known identity that we have 
rewritten , is the explicit representation of xn in terms 
of Chebyshev polynomial Tj(x) , j=0(1)n , for some 
positive integer n. 
      That is                                     
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'
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cj Tj(x)                  (9)                                          

       where          cj = 2-n+1C
n
nj 2/)(       (10)                           

        for j =1(1)n if n is odd & j =0(2)n if n is even . 
The prime dash in the summation  
  means that coefficient of T0(x) in (9) should be 
halved .  Further it can be shown that Chebyshev 
polynomials are orthogonal polynomials with respect 

to the weighting function
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   and satisfies Eqn.(11) 
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Furthermore , Rodriguez  representation  identity is 
given by Eqn.(12). 
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3. TAYLOR’S EXPANSION FOR 

½ln[
x

x
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1
]  WITH ITS  

MONONOMIAL xn    REPLACED  
BY  CHEBYSHEV IDENTITY 
       Taylor's expansion as an infinite series for any 
function y(x) at the point x0 = 0 is  
                   given by       
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    Hence , Taylor's Expansion  for ½ln[
x
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point x0 = 0  is  
                    given by        
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       Observe that the power of each  mononomial  

12 kx   k=1 ,2, 3, …is odd . 

This implies that ,We need  to express  each  

mononomial  
12 kx  as Chebyshev identity by 

Eqn.(9) and  Eqn.(10)  . We must take n odd  in 
Eqn.(10) , i.e. n=1 , 3, 5, 2n-1  .  So , if , We replace  

each  mononomial  
12 kx  by its associate  

Chebyshev identity , Eqn.(14) becomes  
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   as in Eqn.(10)  
Now , if We rewrite Eqn.(15)  as Eqn.(16) below                               
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C   for n=1,2,3,4 ,…,is 

the  sum for the  infinite series  inside the bracket in 
Eqn.(15) which  must be determined . We get the 
many infinite series as  
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can be expressed as an infinite  Chebyshev series as in 

Eqn.(18)    
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4. CHEBYSHEV EXPANSION 

SERIES FOR ½ln [
x
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    To develop the function f(x)=½ln[(1+x)/(1-x)]  as a 
series of Chebyshev polynomials , We suppose that  
f(x)  can be expressed as  
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    Now multiply both sides of Eqn.(19) with Tn(x) and 
integrate with respect to the weight function 
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 to get by using the orthogonality process 

as in Eqn.(11)          
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    The coefficient  Cn =0 for n=0 ,2 ,4,….,2n and  

this can be seen from Eqn.(19) that the integrand  in it 
is an odd function integrated on the interval [-1,1]. 
This implies that , We only seek to evaluate  the odd 
coefficients Cn  for  n=1 ,3 ,5 ,…. , 2n-1 , … 
   Now substitute the Rodriguez representation 
Eqn.(12) into Eqn.(19) 
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  and integrate by parts to get  
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         The reader must  observed the  limits can't be 
determined unless , We use  the L'Hospital Rule in 
Eqn.(20) . Now , if We integrate by parts while 
differentiate (n-1)th times both the  integrands in the 
bracket , We get  
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Hence ,  the coefficients Cn for an odd numbers n=1 ,3 
,5 ,.. , 2n-1 , … can be rewritten as 
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          Observe that the integrals I1  in  Eqn.(22)  and I2  
in Eqn.(23) contains  two  equals   integrals   given by     
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   which are  both equal . Transforms one of  the 
integrals in Eqn.(24) by substituting  x=-y to get the equality 
.Further observes that these two  integrals  in Eqn.(14) 
contribute  zero through the  addition of  I1 &  I2  in 
Eqn.(21) . 
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Since the coefficients cn's are zeros when n is even , 
then the coefficient in  Eqn.(19) can be written as                
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Hence the representation of the function  
f(x)=½ln[(1+x)/(1-x)]  as Chebyshev Series can be  
expressed as 

½ln[(1+x)/(1-x)]= )27()(121 12
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degree 2k-1 
 
 Now  substitute the coefficients in  Eqn.(17) into 
Eqn.(16) and compare with Eqn.(27) ,to get  the 
required  infinite  many  series with their exact sum as 
in Eqn.(1). 
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5.    CONCLUSION 

   In a future work we shall investigate which best   
numerical methods  are available to compute those 
infinite series in Eqn.(1) to a very high accuracy . It is  

well known that as We describe  in [1] , Levin's 
Transform sum some types of infinite series to a very 
high accuracy using FORTRAN LANGUAGE  . 
However , despite the fact  Levin's Transform can be 
considered as one of those best numerical   methods to 
sum infinite series , sometimes it  has a drawback. It 
fails to sum some types of an infinite  series and it 
can't evaluate  convergent  series exactly as in Eqn.(1) 
.       In a future work  , we will write software 
programs to compute the sum for infinite series to a 
high decimal places of accuracy . In particular ,We 
will apply the program to compute  the series as type 
of Eqn.(1) .  
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