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ABSTRACT 
This paper describes is in a concise and clear way the revisiting of 
a classic element of the mechanics which is the hook .To carry out 
the theoretical formulation, the classical hypotheses  of 
construction science have been used, in particular : Bernoulli 
hypothesis for plane sections under load, curved beam under load, 
normal stress formulation and Hooke's law. 
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1. INTRODUCTION 
Let’s start our work considering the picture below where a classic 
hook have been drawn. The hook is loaded with a vertical force P. 
Stresses in section I - II are defined in a simple manner using the 
equations of bending of right beams or more accurately 
considering the neutral axis curvature of the hook.  In the more 
general case, at every  curve  section of the hook there act three 
force factors : a  Normal Force, a Shear Force and a Bending 
Moment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
1.1 Method 
In order to proceed with analysis, we will simplify the geometry 
of the hook, considering only the lower part of the element which 
undergoes to the highest stress. 
 
 
 
 
 
 
 
 
 

 
 

Let’s proceed considering the beam as wedged to one side and 
loaded with the force P to the other, Figure 3,, furthermore let’s 
cut this element with a plane, named m-n and get rid of the right 
part. In order to maintain the equilibrium of forces and moments, 
we should apply to the remaining part a force P and a moment. 
 
 
 
 
 
 
 
 
 

 
 
 

Let’s decompose the force P in two components, a normal, N, and 
a tangential one, Q,  refered to the normal section, figure 4. 
 
 
 
 

Fig. 1. A classical Hook 

Fig. 2 Semplified representation

Fig. 3. Force acting on the element
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The sign of the forces and moment remain the same as in the case 
of a straight beam, exception makes the bending moment  M 
which is accepted positive when it increases the bending. 
In general we will have         ܯ = 	−ܲ	 × 	ݎ × 	sin߮ 
ܳ = ܲ	 cos߮  ,  ܰ = ܲ	 sin߮ 
We can see that we fall in the case of the compound resistance of 
the beam under traction (N) and transversal bending (M, Q). 
In comparison with the straight beam case, the difference will 
appear in the deformation and will be caused by the fact that in 
the curved beam, the length of two points between two adjacent 
cross sections is different while in the straight beam is the same. 
The impact of the shear force will not be considered upon the 
strain of the bended beam due to the fact that it’s impact is 
negligible and the tangential stress can be calculated the same way 
as in the straight beams according to the formula 

߬ = 	
ܳ	 ∗ ܵ௬
	௬ܫ ∗ ܾ

 

 

1.2 The strain 
We will consider the bending of the beam that falls under the clear 
bending situation, neglecting the shear force Q. Let’s refer to the 
following section, cutted with a plane named c-d and subjected to 
the moment M and to the normal stress as showed in figure 5 and 
6 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The equations that express the equilibrium of the section can be 
written as follows: 

ܰݔ = 	න ܣ݀ߪ


= 0 

ܯ௬ = 	න ߪ ∗ ݖ ∗ ܣ݀


= 0 

ܯ௭ = 	න ߪ ∗ ݕ ∗ ܣ݀


= 0 

 
The above equations are insufficient to define  ߪ because of the 
fact that we don’t know the law of distribution of ߪ  in the cross 
section of the beam. In fact, to around this obstacle, we will use 
the findings and conclusions of the theory of elasticity who states 
that sections remains perpendicular to the axis, furthermore, 
longitudinal curved fibers, during bending will be accepted to not 
suppress each other. 
Given these concessions, we will study the deformation of a 
curved beam element that arises under the influence of normal 
force and bending moment, we will apply here the principle of 
independence. Normal force N , being central ,  creates distortions 
uniform over all the section , therefore the strains will be uniform 
and will result : 

ߪ =
ܰ
ܣ  

 

1.3 Bending Moment 
Let us now analyze the effect of the bending moment over the 
deformation of the curved beam, in order to do so we must detach 
the curved element a-b-c-d through the same planes passing 
through the centre of curvature. The left section a-b of the element 
a-b-c-d will be held stationery with respect to the right part and 
rotated around the neutral axis with the ∆݀∅	 angle, as showed in 
figure 7 
 

 

 

 

 

 

Fig. 4. Forces acting on the 
element 

Fig. 5 

Fig. 6. Infinitely small element extracted 
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Fibers distancing z from neutral layer and with initial length  

݀௦ = ݎ	) + (	ݒ ∗ ∆݀∅   will undergo extensions  ∆dୱ = z	 ∗ ∆d∅ 

where extension of each point relative to the height z from the 
neutral axis will be 

ߝ =
∆݀௦
݀௦

=
ݖ

ݎ + ݖ ∗
∆݀∅
݀∅  

 

r = curvature radius of the neutral axis. 

The abovementioned equation, derived from reasoning of 
remaining plane of the cross sections, gives the hyperbolic law of 
change of relative deformations to the longitudinal points with 
respect of the height z. 
During the pure bending case, we will accept the release that 
longitudinal fibers do not exchange forces between them, 
according to this release, the strain state will be linear and can be 
expressed from Hooke’s law: 

ߪ = ߝ ∗ ܧ = ܧ ∗
∆݀∅
݀∅ ∗

ݖ
ݎ +  ݖ

 
In this way, normal stress, as well as relative extensions are 
distributed over the section according to the hyperbolic law. The 
asymptote of the hyperbole is a normal line to z axis and distanced 
z = -r from neutral axis y, showed in figure 8. 

 

 
 
 
 

 
 
 
 
 
 

 
 
 

From the first equation of equilibrium system is defined the 
curvature radius of the neutral layer and the shift z0 of neutral axis 
from the center of gravity of section . 
Replacing the value of σ in the first equation will receive : 
 

න ࢊ࣌


= ࡱ ∗
ࣂࢊ∆
ࣂࢊ ∗න

ࢠ
+࢘ ࢠ

ࢊ =  

 

Since    ܧ ∗ ∆ௗఏ
ௗఏ

≠ 0  then  ∫ ௭
ା௭ ܣ݀ = 0 

From picture :  ݎ + ݖ = ݖ and ߩ = ߩ −  ݎ
Where : ߩ is curvature radius of a fixed line distanced  z from 
neutral layer  
∫ ௭

ା௭ ∗ ܣ݀ = ∫ ఘି
ା௭ ܣ݀ = ∫ ఘ

ା௭ ܣ݀ − ݎ ∗ ∫ ௗ
ା௭ = ∫ ܣ݀ −

∫	ݎ ௗ
ఘ = 0  

From this equation we define the curvature radius of neutral layer  

ݎ =
ܣ

∫ ܣ݀
ߩ

 

The distance ݖ of the gravity centre of the section from neutral 
axis will be : 

ݖ = ܴ − ݎ = ܴ −
ܣ

∫ ܣ݀
ߩ

 

By substituting  ߪ in the second equation of equilibrium we get : 
 

ܯ = න ߪ ∗ ݖ ∗ ܣ݀


= ܧ
∆݀∅
݀∅ න

ଶݖ

ݎ + ݖ
 ܣ݀

 
Expression : ∫ ௭మ

ା௭   axis ݕ  gives the static moment on the ܣ݀
 
∫ ௭మ

ା௭ ∗ ܣ݀ = ∫ ௭మା∗௭ି∗௭
ା௭ ∗ 			ܣ݀ = ∫ ௭∗(ା௭)

ା௭ி ܨ݀ −

ݎ ∫ ௭
ା௭ி ܨ݀ = ∫ ݖ ∗ ܨ݀ − 0 = ܵ௬ 	ி   

 
According to results we can derive that  

∆݀∅
݀∅ =

ܯ
ܧ ∗  ݕܵ

Finally we can get the expression of normal stress due to the 
bending moment 

ߪ =
ܯ
ܵ௬
∗

ݖ
ݎ +  ݖ

The third equilibrium equation can be written as follows 

න ߪ
ி

∗ ݕ ∗ ܨ݀ = ܧ ∗
∆݀∅
݀∅ ∗න

ݕ ∗ ݖ
ݎ + ிݖ

∗ ܨ݀ = 0 

 

Consequently            ∫ ௬∗௭
ା௭ ∗ ܣ݀ = 0                

 
This ending expresses the fact that cross section is symmetrical to 
the z axis. 
From expression ܵ௬ = ∫ ௭మ

ା௭  0<ݕܵ can be defined that ܣ݀
always. On the other hand  ܵ௬ = ܣ ∗ ݖ > 0 . Since A is positive,  
  will be positive to, so, during the bending of the curved beamݖ

Fig. 7  

Fig. 8. Hyperbolic distribution 
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the neutral layer and y axis will always be displaced toward the 
centre of curvature compared to the section’s center of gravity.  
                    
2. ALTERNATIVE METHOD 
The theory of pure bending of the curved beam is a technical and 
approximated theory since it neglects the impact of reciprocated 
action between material fiber, however it has a suficient  precision 
for practical calculations. 
Based on this theory and reasoning for calculation of hook which 
is one of the most classic cases of curved beam subject to 
bending, can be derived another formulation that we are going to 
explain subsequently. 

 
 
 
 
 
 
 
 
 
 
 

 
 

ߝ =
ଵܤܤ
ܤܣ =

ଶܤܤ + ଵܤଶܤ
ܤܣ  

 
 
According to figure 9, ܤܤଵ = ଵܱ ଵܱ

′  express relative extension of 
point ଵܱ ଵܱ

′ . 
 
ߝ = ைభைభ′

ைைభ
			→		 ଵܱ ଵܱ

′ = ߝ ∗ ܱ ଵܱ  
 
ଶܤܤ = ଵܱ ଵܱ

′ = ߝ ∗ ܴ ∗   ߠ݀
 
ଵܤଶܤ = ଵݖ ∗   ߠ݀

 
Replacing we get : 
 

ߝ =
ߝ ∗ ܴ ∗ ߠ݀ + ଵݖ ∗ ߠ݀∆

(	ܴ + (	ଵݖ ∗ ߠ݀
=
ߝ ∗ ܴ + ଵݖ ∗

ߠ݀∆
ߠ݀

ܴ + 	ଵݖ
 

 
Subsequently we add and subtract  ߝ ∗   ଵݖ
 

ߝ =
ఌబ∗ோାఌబ∗௭భିఌబ∗௭భା௭భ∗

∆ഇ
ഇ

ோା௭భ	
		= ߝ + ቀ∆ௗఏ

ௗఏ
− ቁߝ ∗

௭భ
ோା௭భ

  

 
Remembering the simplifications made on the first case we can 
apply the Hooke’s law 
 

ߪ = ܧ ∗ ߝ = ܧ ∗ ቂߝ + ቀ∆ௗఏ
ௗఏ

ቁߝ− ∗
௭భ

ோା௭భ
ቃ  

 
We should substitute this expression in the second equilibrium 
equation to obtain the bending moment. 
ܯ = ∫ ߪ ∗ ܣଵ݀ݖ = ∫ ܧ ∗ ଵݖ ∗ ቂߝ + ቀ∆ௗఏ

ௗఏ
ቁߝ− ∗

௭భ
ோା௭భ

ቃ ∗   ܣ݀
 
ܯ = ܧ ∗ ߝ ∫ ܣଵ݀ݖ + ܧ ∗ ቀ∆ௗఏ

ௗఏ
ቁߝ− ∗ ∫

௭భమ

ோା௭భ
∗ ܣ݀   

 
The first part of the integral is null because it expresses the static 
moment of resistance on the y axis, passing on the center of 
gravity of the section, so it remains only the second part 
 

ܯ = ܧ ∗ ൬
ߠ݀∆
ߠ݀ ൰ߝ− ∗ න

ଵଶݖ

ܴ + ଵݖ
∗ ܣ݀


 

 

Remembering the first equilibrium equation  ∫ ߪ ܣ݀ = 0, we 
can write: 
 

න ܧ ∗ ߝ + ൬
ߠ݀∆
ߠ݀ ൰ߝ− ∗

ଵݖ
ܴ + ଵݖ

൨


∗ ܣ݀ = 0 

 
whence : 

ߝ ∗ න ܣ݀ + ൬
ߠ݀∆
ߠ݀ ൰ߝ− ∗ න

ଵݖ
ܴ + ଵݖ

∗ ܣ݀ = 0 

 

ߝ ∗ ܣ = −൬
ߠ݀∆
ߠ݀ ൰ߝ− ∗ න

ଵݖ
ܴ + ଵݖ

∗ ܣ݀ = 0 

 

If we remark    ܭ = − ଵ
∫

௭భ
ோା௭భ

∗ ிܣ݀  , we will have 

ߝ = ൬
ߠ݀∆
ߠ݀ ൰ߝ− ∗ 			ܭ → 		 ൬

ߠ݀∆
ߠ݀ ൰ߝ− =

ߝ
ܭ  

 
Let us consider now the integral 
  

∫ ௭భమ

ோା௭భ
∗ ܣ݀ = ∫ ௭భ′ ା௭భ∗ோି௭భ∗ோ

ோା௭భ ∗ ܣ݀ = ∫ ቀݖଵ −ܴ ∗ ௭భ
ோା௭భ

ቁ ܣ݀ =

∫ ܨଵ݀ݖ − ܴ ∗ ∫ ௭భ
ோା௭భ

∗ ܣ݀ = −ܴ ∫ ௭భ
ோା௭భ

∗ ܣ݀   
 
For as much as the first term is null, let’s consider the second term 
by multiplying and dividing for the area A 

 −ܴ ∗ 
 ∫

௭భ
ோା௭భ

∗ ܣ݀ = ܴ ∗ ܣ ∗ ܭ  
 
Substituting in the moment’s expression we get : 

ܯ = ܧ ∗ ቀ∆ௗఏ
ௗఏ

ቁߝ− ∗ ܭ ∗ ܣ ∗ ܴ = ܧ ∗ ఌబ

∗ ܭ ∗ ܣ ∗ ܴ = ܧ ∗ ߝ ∗ ܣ ∗ ܴ  

Then : ߝ = ெ
ா∗∗ோ

   and  ቀ∆ௗఏ
ௗఏ

ቁߝ− = ெ
ா∗∗∗ோ

 
 
Replacing in the equation of normal stress we can write : 

ߪ = ܧ ∗ ቂߝ + ቀ∆ௗఏ
ௗఏ

ቁߝ− ∗
௭భ

ோା௭భ
ቃ = ܧ ∗ ቂ ெ

ா∗∗ோ
+ ெ

ா∗∗∗ோ
∗ ௭భ
ோା௭భ

ቃ  

Finally  

Fig. 9. Relative longitudinal deformation 
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ߪ =
ܯ

ܣ ∗ ܴ +
ܯ

ܭ ∗ ܣ ∗ ܴ ∗
ଵݖ

ܴ + ଵݖ
 

 
Where : ܴ → curvature radius of the section’s gravity centers. 
ଵݖ             → distance of the studied layer from this axis. 
 
In the general case of plane bending of the beam with curved axes 
in it’s section, except the bending moment we will have also the  
 normal force N and the shear force Q. 
The last one in not influent and we usually neglect it, so the 
normal stress generated in the section for this case can be defined 
with the formula : 
 
According to the first aproach 
 

ߪ =
ܰ
ܣ +

ܯ
ܵ௬
∗

ݖ
ݎ +  ݖ

 
According to the second aproach 
 

ߪ =
ܰ
ܣ +

ܯ
ܣ ∗ ܴ +

ܯ
ܭ ∗ ܣ ∗ ܴ ∗

ଵݖ
ܴ + ଵݖ

 

 
Both formulas give the same result. The difference lays on the fact 
that in the first approach the impact of  the section and the 
curvature is given through the curvature radius of the neutral axis, 
given by the formula           ݎ = 

∫ ಲ
ഐಲ

   

Meanwhile in the second aproach through the coefficient  k which 
is numerical and given by the formula:  
 

ܭ = −
1
නܣ

ଵݖ
ܴ + ଵݖ

∗ ܣ݀


 

 
The second formulation is mostly used for engineering 
calculations, the difficulty lays mostly on the definition of the 
same coefficient k because the integral must be solved. 
For the solution of the integral is necessary for any given interval, 
the recognition of the dependence function  between the variables 
that are under the sign of the integral, depending on which is 
determined in accordance with the shape and size of the cross 
section of the beam . 
For simple geometric figures, calculating the coefficient k can be 
performed under different accounting  formulas , considering the 
distance of the centre of curvature on the axis of the hook  
( Where in fact the improvement aims ) 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 

 
 

For rectangular rectangle, figure 10, and for the ratio  ݁ ÷ ݎ =   ݑ
and 

lnݔ = 2.3026	lnܭ  , ݕ = −1 + 0.5 ∗ ݑ ∗ ln ଵା௨
ଵି௨

 

If  ߱ < 1	 then     ܭ = ଵ
ଷ
∗ ߱ଶ + ଵ

ହ
∗ ߱ସ + ଵ


∗ ߱ 

 
 
 
 
 
 
 
 
 
 
 
For the trapeze,in figure 11, for the sides ratio  ଵܾ:ܾଶ = ݉ 

 
ܭ = −1 +

2
݉ + 1 ∗

ݎ
ℎ ൜1 + (݉− 1) ∗

ݎ + ܾଶ
ݎ + ଵܾ

− (݊ − 1)൨ൠ 

 
For triangle (particular case of the trapeze where b1=0) 

ܭ = −1 + 2 ∗
ݎ
ℎ ൜

2
3 +

ݎ
ℎ൨ ln

3 ∗ ݎ + 2 ∗ ℎ
ܭ3 − ℎ ൠ 

 
 
 
 
 
 
 
 
 
 

Fig. 10. Rectangular section 

Fig. 10. Trapeziodal section 

Curvature 
axis 

Curvature 
axis 

Fig.12. Elliptical section 

Curvature 
axis 
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For the circle or the ellipse, figure 12,whom longest half-axis lays 
on the plane of the bending of the beam 

ܭ =
1
4 ∗ ߱

ଶ +
1
8 ∗ ߱

ସ +
1

64 ∗ ߱
 

 

Where  w  is taken in accordance with   R/rோ

   or  a/r      ratios 

Sometimes, k coefficient can also determined graphically. 
The graphic drawing is made ( for the example showed in figure 
13 and for many others) by connecting e.g. point M (or M’) in the 
contour of the cross section ( trapeze in our example, which is the 
most acceptable in the case of the hook ) with the centre of 
curvature S. 
From the centre of gravity of the section, O, we let pass the 
straight line ON (or ON’) parallel with line SM (or SM1 ) until the 
intersection with the horizontal MM1 (or M’M’1) in the point N 
(or N’) 
Repeating the same procedure for all the vertical lines, we get a 
series of points, connecting them with continuous spline gives us 
the two surfaces f1 and f2 who met together in the O point. 
From triangles similarity, SMH and ONH, we will have : 
 
ܪܰ
ܪܯ =

ଵݖ
ܭ + ଵݖ

 

 
In this equality we must consider the sign of z1, positive on the 
right and negative on the left of the centre of gravity (in the 
formula the sign is not reflected) 
Thus, considering the sign, coefficient K can be writen : 
 

ܭ = −
1
නܣ

ܪܰ
ܪܯ ∗


 ܣ݀

 
From figure we can write that: 
 
ܣ݀ = 2 ∗ ܯ ∗ ܪ ∗ ݀௭ 
 
And replacing: 
 
ܣ݀ = −

2
නܣ ܪܰ ∗ ݀௭

ା௩

ି௩
 

 
From where we obtain  

 

ܭ  = − ଶ
ி

( ଶ݂ − ଵ݂)  

 
Or  
 

ܭ =
2
ܨ

( ଶ݂ − ଵ݂) 

 

3. CONCLUSIONS 
Normal stress definition and formulation is one of the most 
important study parts of the construction science subject, both in 
university and in real practice applications. As a particular case, 
the curved beams, such as the hook, due to the curved shape are 
double stressed because even if aren’t loaded with normal forces, 
they are subjected to normal stresses, increased furthermore due to 
the born of bending moment on the section. This combination of 
variables drove us to perform the analysis. 
The paper compares two methods for determining the normal 
stress into the curved beam who works in bending.  
In the work have been processed and adapted the formulas of the 
straight beams who works in bending, in the case of the curved 
beams. 
On the basis of studies of the theory of elasticity and results 
obtained experimentally, we studied the deformations of the 
sections of the curved beam on the basis of the principle of 
independence of application of the forces. 
As a consequence of the hypothesis that perpendicular sections 
remain flat and the hyperbolic law of the relative deformations of 
the longitudinal fibers in the section of the curved beam , we 
obtained the calculation formulas where the hook is the most 
evident case of the curved beam where these formulas can be 
applied. 
In the first method, the section’s curvature radius, calculated on 
the neutral axis, is related to the bending moment and though, to 
the normal stress.  In the second method, the section’s curvature 
radius is further elaborated and defines a numerical factor K, more 
suitable for practical applications particularly in simple and 
commonly used sections of beams. The advantage of the second 
method lies on the possibility to define numerically the coefficient 
K. 
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Fig. 11. Determination of coefficient k 


