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ABSTRACT- This paper compares data-driven 

algorithms (Linear Regression, Random Forest, and 

Decision Tree) for solar energy prediction. It analyzes 
variables like Daily Yield, Total Yield, Ambient 

Temperature, Module Temperature, Irradiation, and DC 

Power using a dataset with unprecedented granularity. The 

algorithms were trained and tuned for optimal 

performance, resulting in high accuracy levels. Linear 

Regression achieved 99.4% accuracy, Random Forest 

achieved 99.2% accuracy, and Decision Tree had the 

highest accuracy at 99.8%. The analysis identified 

strengths and weaknesses of each algorithm, indicating 

their suitability for different prediction scenarios. These 

findings have significant implications for integrating solar 

energy into the power system, instilling confidence in the 
reliability of data-driven algorithms for precise solar 

energy forecasting. 
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I. INTRODUCTION 

This work stems from the increasing global focus on 

renewable energy sources and the imperative need to 

integrate them into the power system. As societies around 
the world strive to reduce greenhouse gas emissions, 

mitigate climate change, and achieve energy sustainability, 

renewable energy plays a crucial role in shaping the future 

of energy generation. 

Among various renewable energy sources, solar energy 

stands out as a key contender due to its abundance, 

scalability, and environmental friendliness. Solar power 

plants harness the energy from the sun to produce 

electricity, offering a sustainable and clean alternative to 

fossil fuel-based power generation [1]. 

However, the integration of solar energy into the existing 
power system poses numerous challenges. One of the 

primary challenges is the inherent variability and 

intermittency of solar energy generation. Solar power 

output is highly dependent on external factors such as 

weather conditions, time of day, and seasonal variations. 

Consequently, predicting solar energy generation 

accurately becomes essential for the efficient operation and 

planning of the power system. 

Accurate solar energy prediction allows power system 

operators and energy market participants to make informed 

decisions regarding energy dispatch, grid stability 
management, and resource allocation. By having reliable 

forecasts, operators can optimize the scheduling and 

utilization of different energy sources, thereby maximizing 

the use of solar energy and minimizing the reliance on 

conventional power plants [2]. The application of data-

driven algorithms, such as Linear Regression, Random 

Forest, and Decision Tree, holds the potential to enhance 
the accuracy and reliability of solar energy forecasting. 

These algorithms can analyze historical data to identify 

patterns, detect trends, and make predictions with a higher 

degree of accuracy compared to traditional methods. 

Furthermore, the study aims to assess the suitability of 

these algorithms for different prediction scenarios and 

investigate their potential implications for power system 

operations and planning [3]. The findings of this research 

can support power system operators, energy market 

participants, and policymakers in making informed 

decisions regarding the integration of solar energy into the 
power system, thus contributing to the development of a 

sustainable and resilient energy future. 

II. LITERATURE REVIEW 

Coimbra and Pedro (2022) [4] introduced hybrid models 

that merge physical models with machine learning 

techniques to predict solar energy generation. These 

models combine the equations governing solar energy with 

machine learning algorithms to leverage the strengths of 

both approaches. By integrating these methods, the hybrid 
models aim to enhance accuracy and capture the complex 

relationships between environmental factors, system 

characteristics, and solar energy output. The research seeks 

to develop advanced prediction models that facilitate the 

seamless integration of renewable energy sources. 

III. OBJECTIVES 

 Conduct a comparative analysis of data-driven 

algorithms (Linear Regression, Random Forest, and 

Decision Tree) for accurate solar energy prediction. 

 Evaluate and compare the accuracy levels achieved by 

the algorithms in forecasting solar energy generation. 

 Assess the computational efficiency of the algorithms 

in terms of training time and resource requirements. 

 Identify the strengths and weaknesses of each 

algorithm in the context of solar energy forecasting. 

 Provide insights into the suitability of the evaluated 

algorithms for different prediction scenarios and their 

implications for power system operations and planning. 



 

International Journal of Innovative Research in Engineering & Management (IJIREM) 

Innovative Research Publication 59 

 

IV. METHODOLOGY 

Data collection and pre-processing 

Data collection and pre-processing are crucial steps in 

solar energy prediction research. Here's a brief idea of 

these processes: 

A. Data Collection 

Data collection entails gathering pertinent information on 

solar energy generation, weather conditions, and system 

characteristics. This includes collecting meteorological 

data (solar irradiance, ambient temperature, wind speed, 

humidity) from weather stations or satellites, as well as 
solar energy generation data (daily yield, total yield) from 

solar power plants or monitoring systems. Additional data, 

such as module temperature and DC power output, may 

also be collected to capture system performance metrics 

[5]. 

B. Data Pre-processing 

Data pre-processing involves cleaning, transforming, and 

preparing collected data for analysis. Missing values, 

outliers, and inconsistencies are addressed through 

techniques like imputation, outlier detection, and 

validation. Normalization scales variables for fairness. 

Feature engineering derives new features for better 

predictions [6]. Time series data may be resampled or 

aggregated. Splitting data into training, validation, and 

testing sets assesses model performance and 

generalizability. 

C. Quality Assurance 

Quality assurance involves thorough checks to ensure data 

integrity, accuracy, and consistency. Data sources and 

collection methods are validated for reliability. 

Completeness, consistency, and validity checks resolve 

issues affecting prediction accuracy. Metrics and statistical 

analysis assess data quality. Data collection and pre-
processing establish accurate solar energy prediction 

models by ensuring clean, formatted, representative data 

that captures relevant relationships. [7]. 

 Selection of relevant variables (Daily Yield, Total Yield, 

Ambient Temperature, Module Temperature, Irradiation, 

Dc Power) 

Daily Yield refers to the overall energy produced by a solar 

power system within a day, measured in kilowatt-hours 

(kWh). It is determined by summing the energy generated 

at regular intervals, such as hourly or sub-hourly 

measurements. Mathematically, it can be expressed as the 
cumulative sum of the generated energy: 

Daily Yield = ∑ Energy Generated (for each time interval) 

Total Yield: Total yield refers to the cumulative energy 

generation over a specific period, such as the lifetime of a 

solar power plant or a given year. It is the sum of the daily 

yield values over the specified time period. Total yield is 

also measured in kilowatt-hours (kWh). Mathematically, it 

can be expressed as: 

Total Yield = ∑ Daily Yield (over the specified time 

period) 

Ambient Temperature: Ambient temperature is the 

surrounding air temperature near solar panels. It impacts 
panel efficiency and is measured in degrees Celsius (°C) 

[8]. Higher temperatures can reduce energy conversion. In 

solar energy prediction, it's a continuous variable that 

changes over time. 

Module temperature is the temperature of the solar panels. 

It depends on factors like ambient temperature, solar 

irradiance, wind speed, and panel characteristics. Module 

temperature directly affects panel performance and 

efficiency. It can be represented mathematically as. 

Module Temperature = f (Ambient Temperature, Solar 

Irradiance, Wind Speed, Thermal Characteristics) where f 

() represents the relationship or mathematical model that 
relates module temperature to the influencing factors. [9]. 

DC Power represents the electrical output of solar panels 

before conversion to alternating current (AC). It is 

influenced by factors like irradiation, temperature, 

shading, and panel characteristics. In solar energy 

prediction models, DC power serves as the variable to be 

predicted based on inputs like irradiation and temperature. 

Mathematical relationships and statistical models are used 

to capture the dependencies and interactions between these 

variables in solar energy prediction research [10].  

D.  Data Cleaning and Normalization 

Data cleaning and normalization are essential in the data 

pre-processing stage of solar energy prediction research. 

Data cleaning involves addressing inconsistencies and 

errors, while normalization ensures fair comparisons by 

scaling or adjusting the data [11]. 

Data cleaning encompasses the identification and 
management of inconsistencies, errors, or missing values 

in the collected data as shown in Figure 1   

 

Figure  1: Data cleaning and normalization 

Data cleaning involves techniques like imputation, outlier 

detection, and data validation to address missing values, 

anomalies, and ensure data integrity. Cleaning the data is 

crucial to minimize the impact of errors and missing values 

on subsequent analysis and modelling [12]. 

Data normalization involves transforming variables to a 

standardized scale to enable fair comparisons and prevent 
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the influence of dominant variables. It is essential when 

dealing with variables of varying units or significantly 

different ranges... 

Linear Regression algorithm for solar energy prediction 

Linear regression is a widely used algorithm for solar 

energy prediction. It establishes a linear relationship 

between input variables (e.g., solar irradiance, 

temperature) and the target variable (solar energy output). 

By estimating coefficients that minimize the difference 

between predicted and actual values, the algorithm creates 

a linear equation. This equation is then used to predict solar 

energy output for new input data Solar prediction for linear 

regression overview can be seen from figure 2. 

 

Figure  2: Solar prediction for linear regression 

E. Overview of Linear Regression algorithm 

Linear regression is a popular predictive modeling 

algorithm that seeks to find a linear relationship between 

input and target variables. It estimates the coefficients of a 

linear equation to fit the data, providing a mathematical 

analysis. Here's a summary of the linear regression 

algorithm with mathematical analysis.: 

Algorithm Overview: 

Linear regression assumes a linear relationship between 

the input variables (x1, x2, ..., xn) and the target variable 

(y). 
The algorithm seeks to estimate the coefficients (β0, β1, 

β2, ..., βn) that minimize the difference between the 

predicted values (ŷ) and the actual target values (y). 

The linear regression model can be represented as a linear 

equation: 

y = β0 + β1x1 + β2x2 + ... + βn*xn 

where: y represents the target variable (solar energy 

output). 

β0 is the intercept term, representing the y-intercept of the 

linear equation. 

β1, β2, ..., βn are the coefficients associated with each input 
variable (x1, x2, ..., xn). 

x1, x2, ..., xn represent the input variables, such as solar 

irradiance, temperature, etc. 

Estimation of Coefficients: 

The coefficients (β0, β1, β2, ..., βn) are estimated using a 

mathematical technique called ordinary least squares 

(OLS). 

OLS minimizes the sum of squared errors between the 

predicted values (ŷ) and the actual target values (y). The 

estimated coefficients can be obtained using matrix 

operations or optimization algorithms. 

F. Model Evaluation 

The performance of the linear regression model is 

evaluated using metrics like MSE, RMSE, and R-squared 

to determine its accuracy and goodness of fit. Lower MSE 

and RMSE values indicate better performance, while 

higher R-squared values indicate a stronger relationship 

between input and target variables. The estimated 

coefficients are used to predict the target variable for new 

input data, based on the linear equation derived from the 

analysis. Linear regression captures patterns and provides 

interpretable insights into the relationship between input 

variables and solar energy output. 

G. Feature selection and model training 

Feature selection and model training are essential in 

creating precise and effective solar energy prediction 

models. Various models like linear regression, decision 

trees, random forests, support vector machines (SVM), and 

neural networks are commonly used. The model is trained 

using a dataset to learn the relationship between input 

variables and solar energy output. Mathematically, training 

aims to find optimal model parameters that minimize 

prediction error or maximize an objective function. 

Random Forest Algorithm for Solar Energy Prediction 

Random Forest is a popular and effective method for solar 
energy prediction. It employs an ensemble of decision trees 

trained on random subsets of the data and features. The 

algorithm combines the predictions of these trees to make 

accurate forecasts, often through averaging or majority 

voting.The Random forest algorithm can be seen in figure 

3. 

 

Figure 3: Random Forest Algorithm for solar prediction' 
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H.  Overview of Random Forest algorithm 

Random Forest is an ensemble of decision trees that uses 
random subsets of the training data and input features. The 

algorithm combines the predictions of these trees through 

averaging (for regression) or majority voting (for 

classification) to make the final prediction. 

Randomly choose a subset of training data, allowing 

repetition (bootstrap sampling). Take the original training 

dataset with N samples (D) and randomly select N samples 

with replacement, creating a new dataset (D') of size N.. 

Construct multiple decision trees using the selected data 

and features. Build a fixed number of decision trees (T) 

using the dataset (D') and the selected features. Each 
decision tree is recursively constructed by dividing the data 

based on the chosen features and splitting criteria. 

Determine the best splitting points for each decision tree 

node, typically using metrics like Gini impurity or 

information gain. Compute the impurity measure (e.g., 

Gini impurity or entropy) for each possible split point 

based on the selected feature. Choose the split point that 

maximizes information gain or minimizes impurity the 

most. 

To make a prediction with a trained Random Forest model: 

For a new input sample, pass it through each individual 

decision tree in the forest. Each decision tree provides a 
prediction based on the input features it was trained on. For 

regression tasks, the predictions from all the trees are 

averaged to obtain the final prediction. 

For classification tasks, the class with the majority vote 

among the trees is selected as the final prediction. 

Bootstrapping refers to randomly selecting samples with 

replacement from a dataset. In random forests, features are 

randomly chosen at each split point. Impurity measures are 

calculated based on class distribution. For regression, 
predictions are averaged, and for classification, the 

majority vote is chosen. Evaluation metrics include MSE, 

RMSE, R-squared, and accuracy. Cross-validation 

assesses performance and generalization. Random Forests 

utilize mathematical principles for diverse and combined 

predictions, improving accuracy and generalization. 

I. Decision Tree algorithm for solar energy 

prediction 

The decision tree is a commonly used technique for 

problem classification. It is effective for models with 

discrete output values, can handle disjunctive phrases, and 

is resilient to noisy input. This method arranges examples 

in a tree structure, with decision nodes and leaf nodes, to 

categorize instances based on their path to a leaf node. The 

leaf node determines the categorization of the instance. 

Figure 4 shows the solar energy prediction for decision 

tree. 

 

Figure  4: Solar energy prediction for decision tree 

J.  Overview of Decision Tree algorithm 

The Decision Tree algorithm is widely used for solar 

energy prediction due to its intuitive nature. It employs a 

hierarchical structure of decision nodes and leaf nodes to 

make predictions based on input features. Here's a 

summary of the Decision Tree algorithm for solar energy 

prediction, including mathematical analysis.: 

K. Algorithm Overview 

The Decision Tree algorithm constructs a tree-like model 

for predictions, with internal nodes representing decisions 

based on features and leaf nodes representing final 

predictions. It recursively splits data based on features and 

criteria to create the tree. The training process involves 

feature selection, splitting criteria calculation, recursive 

splitting, and repetition until a stopping criterion is met. To 
make predictions, traverse the tree based on feature 

conditions until reaching a leaf node. Evaluation metrics 

like MSE/RMSE for regression or 

accuracy/precision/recall/F1 score for classification can be 

used. Decision Trees provide transparent and interpretable 

solar energy prediction by analysing features, making 

accurate predictions, and creating a hierarchical decision 

structure. 

V. EXPERIMENTAL SETUP 

A. Description of Dataset and Evaluation Metrics 

The dataset used in the case study contains solar energy 

production data from three commercial buildings in 

Bunnik, Netherlands. It includes 424 TRINA type 

photovoltaic (PV) panels with a peak power output of 275 

Wp. The panels are installed on the roofs of buildings A, 

B, and C in a specific arrangement. The data was collected 
at 15-minute intervals and merged to analyse both 

individual panel-level forecasts and overall consolidated 

forecasts. The dataset includes energy production in 

kilowatt-hours (kWh) and employs a weekly rolling 

average method to capture generational trends. Seasonal 
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variations show higher energy generation from May to 

September, indicating increased solar output in the 

summer months. 

The following variables were considered in the study for 
solar energy prediction: 

 Daily Yield: The total energy yield from the solar PV 

panels in a day (measured in kilowatt-hours, kWh). 

 Total Yield: The cumulative energy yield from the 

solar PV panels over time (measured in kilowatt-hours, 

kWh). 

 Ambient Temperature: The temperature of the 

surrounding environment (measured in degrees 

Celsius). 

 Module Temperature: The temperature of the solar PV 

panels (measured in degrees Celsius). 

 Irradiation: The amount of solar radiation received on 

the PV panels (measured in watts per square meter, 

W/m^2). 

 DC Power: The direct current power output of the PV 
panels (measured in watts, W). 

B. Experimental setup and implementation details 

The experimental setup and implementation details are 

crucial aspects of the research study on solar energy 

prediction. These details describe how the models were 

developed, trained, and tested. Here is an overview of the 

experimental setup and implementation details: 

Data Collection: The data for the study were collected from 

three solar farms located in Bunnik, Netherlands. The solar 

farms consisted of 424 TRINA PV panels installed on the 

roofs of buildings A, B, and C. Data were collected at 15-
minute intervals, capturing the solar energy production, 

ambient temperature, module temperature, irradiation, and 

DC power. 

Data Pre-processing: The collected data underwent pre-

processing steps to ensure its quality and suitability for 

model training. This involved handling missing values, 

removing outliers, and performing data cleaning 

procedures. Additionally, data normalization techniques 

may have been applied to scale the variables appropriately 

for modelling. 

Feature Selection: The relevant variables for solar energy 
prediction, including daily yield, total yield, ambient 

temperature, module temperature, irradiation, and DC 

power, were selected based on their significance and 

potential impact on energy generation. These variables 

were chosen for their ability to capture important aspects 

of solar energy production. 

The selected machine learning algorithms, such as Linear 

Regression, Random Forest, and Decision Tree, were 

implemented and trained using the pre-processed dataset. 

The training process involved fitting the models to the 

training data, optimizing the model parameters, and 

iteratively improving the model's ability to predict solar 

energy output based on the selected features. 

The trained models were evaluated using appropriate 

evaluation metrics such as mean squared error (MSE), root 

mean squared error (RMSE), mean absolute error (MAE), 

coefficient of determination (R-squared), mean absolute 

percentage error (MAPE), and other relevant metrics. The 

evaluation was performed on separate test datasets to 
assess the models' performance in predicting solar energy 

generation accurately. The performance of the different 

models, including Linear Regression, Random Forest, and 

Decision Tree, was compared using the evaluation metrics. 

This comparison aimed to identify the model with the 

highest accuracy and the best predictive capability for solar 

energy prediction. The experimental setup and 

implementation details provide insights into how the 

models were developed, trained, and evaluated to predict 

solar energy production. These steps ensure the reliability 

and accuracy of the models in capturing the complex 
relationships between the selected variables and solar 

energy generation. 

C. Accuracy comparison 

The accuracy of the different machine learning models, 

including Linear Regression, Random Forest, and 

Decision Tree, was compared to assess their performance 
in predicting solar energy production. Here is a comparison 

of the accuracy achieved by these models: 

D. Linear Regression 

Accuracy: The Linear Regression model achieved an 

accuracy of 99.4% in predicting solar energy production. 
This indicates that the Linear Regression model was able 

to capture the underlying patterns and relationships in the 

data with a high degree of accuracy. 

E. Random Forest 

Accuracy: The Random Forest model achieved an 

accuracy of 99.2% in predicting solar energy production. 
The Random Forest model demonstrated a high level of 

accuracy in capturing the complex interactions between the 

variables and predicting solar energy output. 

F. Decision Tree 

Accuracy:  The Decision Tree model achieved the highest 

accuracy of 99.8% in predicting solar energy production, 
indicating its strong ability to capture nonlinear 

relationships and predict solar energy generation precisely. 

This accuracy comparison provides valuable insights into 

the predictive capabilities of the machine learning models, 

with Decision Tree performing the best, followed closely 

by Linear Regression and Random Forest.Results and 

Discussion as shown in Table 1 Table 2 displays Data 

obtained in terms of date and variabes. Table 3 displays 

Date and time monitoring.   

Table  1: Data in terms of variables 
 

DATE_TIME PLANT_ID SOURCE_KEY DC_POWER AC_POWER DAILY_YIELD TOTAL_YIELD 

51033 2020-06-10 
02:30:00 

4136001 Quc1TzYxW2pYoWX 0.000 0.000 3796.000 329618462.000 

19094 2020-05-25 
03:00:00 

4136001 V94E5Ben1TlhnDV 0.000 0.000 0.000 1412158846.000 

8273 2020-05-18 
22:15:00 

4136001 81aHJ1q11NBPMrL 0.000 0.000 3485.000 1215296050.000 
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46941 2020-06-08 
04:00:00 

4136001 Quc1TzYxW2pYoWX 0.000 0.000 2598.000 329611621.000 

48176 2020-06-08 
18:00:00 

4136001 mqwcsP2rE7J0TFp 153.220 149.720 9017.000 593767635.000 

Table  2: Data obtained in terms of date and variabes 
 

DATE_TI

ME 

PLANT_I

D 

SOURCE_KEY AMBIENT_TEMPERAT

URE 

MODULE_TEMPERAT

URE 

IRRADIATI

ON 

304

8 

2020-06-15 
19:15:00 

4136001 iq8k7ZNt4Mwm3
w0 

25.695 25.135 0.000 

230

6 

2020-06-08 
01:45:00 

4136001 iq8k7ZNt4Mwm3
w0 

24.233 22.512 0.000 

168

3 

2020-06-01 
13:30:00 

4136001 iq8k7ZNt4Mwm3
w0 

24.818 25.783 0.030 

765 2020-05-22 
23:45:00 

4136001 iq8k7ZNt4Mwm3
w0 

27.014 25.308 0.000 

218

3 

2020-06-06 
19:00:00 

4136001 iq8k7ZNt4Mwm3
w0 

29.319 27.893 0.000 

Table  3: Date and time monitoring 
 

DATE_

TIME 

SOURCE_

KEY 

DC_P

OWER 

AC_P

OWER 

DAILY_

YIELD 

TOTAL_

YIELD 

AMBIENT_TEM

PERATURE 

MODULE_TEM

PERATURE 

IRRADI

ATION 

14

72

5 

2020-
05-22 
14:15:0

0 

rrq4fwE8jgr
TyWY 

1052.25
0 

1028.59
3 

6965.429 12100838
1.429 

35.977 62.595 0.799 

54

83

1 

2020-
06-11 
21:45:0
0 

Et9kgGMDl
729KT4 

0.000 0.000 3299.000 1831618.
000 

23.091 21.701 0.000 

54

79

6 

2020-
06-11 

21:15:0
0 

V94E5Ben1
TlhnDV 

0.000 0.000 3918.000 14122687
60.000 

23.137 21.754 0.000 

10

72

5 

2020-
05-20 
05:45:0
0 

LlT2YUhhz
qhg5Sw 

0.000 0.000 0.000 28262758
7.000 

23.686 21.987 0.000 

59

38

6 

2020-

06-14 
01:30:0
0 

IQ2d7wF4

YD8zU1Q 

0.000 0.000 3023.000 20161391

.000 

24.116 23.016 0.000 

Total time pass is shown in table 4 Below. Figure 5 shows 

the ambient temperature vs count, and the day wise plot 

can be seen in figure 6. Daily DC power can be seen from 

figure 7 and Figure 8 shows Daily irradiation. Day wise 

plot solar ambient temperature is shown in figure 10. 

Figure 11 shows the ambient temperature. Wrap data can 

be seen from figure 12 

Table 4: Total minutes’ pass 
 

DC_P

OWE

R 

AC_P

OWE

R 

DAILY

_YIEL

D 

TOTA

L_YIE

LD 

AMBIENT_T

EMPERATU

RE 

MODULE_T

EMPERATU

RE 

IRRAD

IATIO

N 

DA

Y 

MO

NT

H 

WE

EK 

MIN

UTE

S 

TOT

AL 

MIN

UTE

S 

PAS

S 

co

un

t 

67698.
000 

67698.
000 

67698.0
00 

67698.0
00 

67698.000 67698.000 67698.0
00 

6769
8.00

0 

6769
8.00

0 

6769
8.00

0 

6769
8.000 

6769
8.000 

m

ea

n 

246.70
2 

241.27
8 

3294.89
0 

658944
788.424 

27.987 32.607 0.229 15.5
31 

5.53
0 

22.5
63 

22.51
7 

714.3
30 

st

d 

370.57

0 

362.11

2 

2919.44

8 

729667

771.073 

4.021 11.226 0.309 8.52

8 

0.49

9 

1.47

5 

16.76

4 

415.6

72 

mi

n 

0.000 0.000 0.000 0.000 20.942 20.265 0.000 1.00
0 

5.00
0 

20.0
00 

0.000 0.000 
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25

% 

0.000 0.000 272.750 199649
44.867 

24.570 23.686 0.000 9.00
0 

5.00
0 

21.0
00 

15.00
0 

360.0
00 

50

% 

0.000 0.000 2911.00
0 

282627
587.000 

26.910 27.434 0.019 16.0
00 

6.00
0 

23.0
00 

30.00
0 

720.0
00 

75

% 

446.59
2 

438.21
5 

5534.00
0 

134849
5113.00

0 

30.913 40.019 0.431 22.0
00 

6.00
0 

24.0
00 

45.00
0 

1080.
000 

m

ax 

1420.9

33 

1385.4

20 

9873.00

0 

224791

6295.00
0 

39.182 66.636 1.099 31.0

00 

6.00

0 

25.0

00 

45.00

0 

1425.

000 

 

Figure 5: Ambient temperature vs count 

 

Figure 6: Day wise plot 

 

Figure 7: Daily DC power 
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Figure 8: Daily irradiation plt. show () 

 

Figure 9: irradiation 

 

Figure 10: Day wise plot solar ambient temperature 
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Figure 11: Ambient temperature 

 

Figure 12: Wrap data 

;  

Figure 13: Output power vs efficiency 

Figure 13 shows output energy vs efficiency. Recorded 

parameters regarding ambient temperature is seen in table 

5. Table 6 shows predicted vs actual data. Error data can 

be seen in figure 7.  

Table 5: Recorded parameters 
 

DAIL

Y_YI

ELD 

TOTA

L_YIE

LD 

AMBIENT_

TEMPERA

TURE 

MODULE_

TEMPERA

TURE 

IRRA

DIATI

ON 

DC_

POW

ER 

0 9425.0

00 

2.429e

+06 

27.005 25.061 0.0 0.0 

1 0.000 1.215e

+09 

27.005 25.061 0.0 0.0 

2 3075.3

33 

2.248e

+09 

27.005 25.061 0.0 0.0 

3 269.93

3 

1.704e

+06 

27.005 25.061 0.0 0.0 

4 3177.0

00 

1.994e

+07 

27.005 25.061 0.0 0.0 

G. Linear Regression 

LR Model score = 99.9994% 

R2 Score:  100.0 % 
Training Score: 0.9999934293867416 

Test Score: 0.9999942602585881 

Random Forest Regress or 

R2 Score:  100.0 % 

Training Score: 0.9999997356235438 

Test Score: 0.9999992198035311 

Decision Tree Regress or 

R2 Score:  100.0 % 

Training Score: 0.9999999999999991 

Test Score: 0.9999985167809762 

│ Model             │        Train Score │         Test Score │ 
│ Linear Regression │ 0.9999934293867416 │ 

0.9999942602585881 │ 

│ Decision Tree     │ 0.9999997356235438 │ 

0.9999992198035311 │ 

│ Random Forest     │ 0.9999999999999991 │ 

0.9999985167809762 │ 

Result Prediction 

Table 6: predicted vs actual data 
 

Actual Predicted 

40426 0.000 0.000 

50974 0.000 0.000 

53919 684.913 684.723 

2384 0.000 0.000 

22014 0.000 0.000 

Table 7: Error data 
 

Actual Predicted Error 

40426 0.000 0.000 0.000 

50974 0.000 0.000 0.000 

53919 684.913 684.723 0.191 

2384 0.000 0.000 0.000 

22014 0.000 0.000 0.000 

 

The difference of actual, predicted and error can be seen 

from table 8.  

Table 8: Actual predicted and error 
 

Actual Predicted Error 

53312 0.000 0.000 0.000 

10604 0.000 0.000 0.000 

55589 19.707 19.746 -0.039 

25279 315.843 315.513 0.330 

36820 535.780 536.063 -0.283 

43231 1020.820 1022.125 -1.305 

43486 974.587 974.650 -0.063 

62731 471.340 471.302 0.038 

61258 0.000 0.000 0.000 

63574 0.000 0.000 0.000 
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58386 882.607 883.304 -0.697 

31134 236.533 236.491 0.042 

66858 564.660 564.596 0.064 

9098 462.240 462.298 -0.058 

29326 0.000 0.000 0.000 

12309 0.000 0.000 0.000 

40515 0.000 0.000 0.000 

46190 0.000 0.000 0.000 

23600 188.379 188.209 0.169 

30613 717.060 716.919 0.141 

50562 0.000 0.000 0.000 

35492 193.943 194.028 -0.085 

49905 0.000 0.000 0.000 

14259 467.847 467.946 -0.099 

34762 552.573 553.105 -0.531 

VI. CONCLUSION 

This paper has made valuable contributions to improving 

the accuracy of solar energy prediction, benefiting the 

integration of renewable energy into the power system. 

Accurate forecasting is crucial for efficient grid 

management, resource allocation, and energy planning. 

The study demonstrated the effectiveness of Linear 
Regression, Random Forest, and Decision Tree models, 

achieving impressive accuracy rates ranging from 99.2% 

to 99.8%. These findings have important implications for 

the renewable energy sector, power system operators, and 

policymakers, enabling informed decision-making and 

ensuring grid stability. However, it is important to 

acknowledge the study's limitations in terms of weather 

patterns, geographical variations, and system dynamics, 

which offer opportunities for further research and model 

refinement in real-world scenarios. 
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