Algebraic Nature of Fuzzy Subgroups Under Homomorphism

Khadijatul Kobra
General Education Department,
Daffodil International University
Dhaka, Bangladesh
khadija.ged@daffodilvarsity.edu.bd

Mohammad Monirul Islam
Computer Science and Engineering Department,
Daffodil International University
Dhaka, Bangladesh
monirul@daffodilvarsity.edu.bd

Mr. Anowar Ullah
Business Administration Department
Daffodil International University
Dhaka, Bangladesh
anowar.bba@daffodilvarsity.edu.bd

ABSTRACT
The purpose of this paper is to discuss the nature of fuzzy level subgroups under homomorphism and anti-homomorphism. It is shown that homomorphic image (pre-image)/anti-homomorphic image (pre-image) of level subgroups is also a level subgroup.

Keywords
Fuzzy homomorphism, fuzzy anti-homomorphism, fuzzy level subgroups, homomorphic image, anti-homomorphic image

1. INTRODUCTION
Fuzzy set was first introduced by Zadeh. Rosenfield introduced the notion of fuzzy subgroups. The effect of group homomorphism on fuzzy groups was studied by Rosenfeld, Anthony and Sherwood, Sidky and Mishref and Akgul. Rosenfeld proved that if f is a group homomorphism on G, then $S(G)$ denotes the set of all fuzzy sets defined on G

Suppose $f : G \rightarrow G^1$

f is a group homomorphism and F is a fuzzy subgroup of G "with respect to a continuous t-norm T" then $f(F)$ is a fuzzy subgroup of G^1 with respect to T.

Since, \wedge is a continuous t-norm it follows that,

$f(F)$ belongs to $S(G^1)$ whenever F belongs to $S(G)$

It was proved by Akgul that F^1 belongs to $S(G^1)$ implies that f^{-1} belongs to $S(G)$

In this chapter we study the effect of group homomorphism on the level subgroups of fuzzy groups.

2. PRELIMINARIES
2.1 Group Homomorphism
If $(G, .)$ and $(G^1, .)$ any two groups, then the function f is called a group homomorphism if

$f (xy) = f(x)f(y), \forall x, y \in G$

2.2 Group Anti-Homomorphism
If $(G, .)$ and $(G^1, .)$ any two groups, then the function f is called a group anti-homomorphism if

$f (xy) = f(y)f(x), \forall x, y \in G$

2.3 Image of a fuzzy set and pre-image of a fuzzy set
Suppose S is a groupoid and $f : S \rightarrow I$ is a fuzzy set and $\phi : S \rightarrow S$ is a mapping and $g : \phi(S) \rightarrow I$ is a fuzzy set defined by

$g(y) = \max_{x\in \phi^{-1}(y)} \{f(x)\}$

Then g is called image of f under ϕ.

Conversely, f is called pre-image of g under ϕ.
3. SOME PROPOSITIONS

3.1 Proposition 1

The homomorphic image of a level subgroup of a fuzzy subgroup of a group G is a level subgroup of a fuzzy subgroup of a group G'.

Proof:
Let G and G' be any two groups.
Let \(f : G \rightarrow G' \) be a homomorphism.
That is \(f(xy) = f(x)f(y), \forall x, y \in G \).
Let, \(V = f(A) \) where A is a fuzzy subgroup of a group G.
Clearly V is a fuzzy subgroup of a group G'.
Let, \(x, y \in G \).
Implies \(f(x) \) and \(f(y) \) in G'.
Clearly \(A_1 \) is a level subgroup of A.
That is \(A(x) \geq t \) and \(A(y) \geq t \);
\(A_{xy} \geq t \).
We have to prove that \(f(A) \) is a level subgroup of V.
Now \(V(f(x)) \geq A(x) \geq t \implies V(f(x)) \geq t \);
\(V(f(y)) \geq A(y) \geq t \implies V(f(y)) \geq t \);
And \(V(f(x)f(y))^{-1} = V(f(x)f(y^{-1})) \), as \(f \) is a homomorphism.
\(V(f(xy^{-1})) \), as \(f \) is a homomorphism.
\(\geq A(xy^{-1}) \geq t \).
Which implies that \(V(f(x)(f(y))^{-1}) \geq t \).
Hence \(f(A_1) \) is a level subgroup of a fuzzy subgroup V of a group G'.

3.2 Proposition 2

The homomorphic pre-image of a level subgroup of a fuzzy subgroup of a group G is a level subgroup of a fuzzy subgroup of a group G.

Proof:
Let G and G' be any two groups.
Let \(f : G \rightarrow G' \) be a homomorphism.
That is \(f(xy) = f(x)f(y), \forall x, y \in G \).
Let, \(V = f(A) \) where V is a fuzzy subgroup of a group G'.
Clearly A is a fuzzy subgroup of group G.
Let \(f(x), f(y) \in G' \), implies x and y in G.
Clearly \(f(A_1) \) is a level subgroup of V.
That is \(V(f(x)) \geq t \) and \(V(f(y)) \geq t \);
\(V(f(x)(f(y))^{-1}) \geq t \).
We have to prove that \(A_1 \) is a level subgroup of A.
Now, \(A(x) = V(f(x)) \geq t \implies A(x) \geq t \);
\(A(y) = V(f(y)) \geq t \implies A(y) \geq t \);
And \(A(xy^{-1}) = V(f(xy^{-1})) \);
\(= V(f(x)f(y^{-1})) \), as \(f \) is a homomorphism.
\(= V(f(x)(f(y))^{-1}) \), as \(f \) is a homomorphism.
\(\geq t \).
Which implies that \(A(xy^{-1}) \geq t \).
Hence \(A_1 \) is a level subgroup of a fuzzy subgroup of a group G'.

3.3 Proposition 3

The anti-homomorphic image of a level subgroup of a fuzzy subgroup of a group G is a level subgroup of a fuzzy subgroup of a group G'.

Proof:
Let G and G' be any two groups.
Let \(f : G \rightarrow G' \) be an anti-homomorphism.
That is \(f(xy) = f(y)f(x), \forall x, y \in G \).
Let, \(V = f(A) \) where V is a fuzzy subgroup of a group G.
Clearly V is a fuzzy subgroup of a group G'.
Let, \(x, y \in G \), implies f(x) and f(y) in G'.
Clearly \(A_1 \) is a level subgroup of A.
That is \(A(x) \geq t \) and \(A(y) \geq t \);
\(A(xy^{-1}) \geq t \).
We have to prove that \(f(A_1) \) is a level subgroup of V.
Now \(V(f(x)) \geq A(x) \geq t \implies V(f(x)) \geq t \).

Copyright © 2018. Innovative Research Publications. All Rights Reserved
\[
V \left(f(y) \right) \geq A(y) \geq t \Rightarrow V \left(f(y) \right) \geq t
\]

And
\[
V \left(f(x)f(y)^{-1} \right) = V \left(f(x)\right) = V \left(f(y) \right), \text{as } f \text{ is an anti-homomorphism}
\]

\[
V \left(f \left(y^{-1}x \right) \right) \text{ as } f \text{ is an anti-homomorphism}
\]

\[
\geq A \left(y^{-1}x \right) \geq t
\]

Which implies that
\[
V \left(f(x)f(y)^{-1} \right) \geq t
\]

Hence \(f(A_1) \) is a level subgroup of a fuzzy subgroup \(V \) of a group \(G_1 \).

3.4 Proposition 4

The anti-homomorphism pre-image of a level subgroup of a fuzzy subgroup of a group \(G_1 \) is a level subgroup of a fuzzy subgroup of a group \(G \).

Proof:

Let \(G \) and \(G_1 \) be any two groups,

Let \(f : G \rightarrow G_1 \) be an anti-homomorphism.

That is
\[
f(x) \cdot f(y) = f(x y), \quad \forall x, y \in G
\]

Let,
\[
V = f(A) \quad \text{Where } V \text{ is a fuzzy subgroup of a group } G_1
\]

Clearly \(A \) is a fuzzy subgroup of \(G_1 \).

Let \(f(x), f(y) \in G_1 \), implies \(x \) and \(y \) in \(G \).

Clearly \(f(A_1) \) is a level subgroup of \(V \).

That is
\[
V \left(f(x) \right) \geq t \quad \text{and } V \left(f(y) \right) \geq t
\]

\[
V \left(\left(f(y) \right)^{-1} f \left(x \right) \right) \geq t.
\]

We have to prove that \(A_1 \) is a level subgroup of \(A \).

Now,
\[
A \left(x \right) = V \left(f \left(x \right) \right) \geq t \Rightarrow A \left(x \right) \geq t.
\]

\[
A \left(y \right) = V \left(f \left(y \right) \right) \geq t \Rightarrow A \left(y \right) \geq t.
\]

And
\[
A \left(xy^{-1} \right) = V \left(f \left(xy^{-1} \right) \right)
\]

\[
= V \left(\left(f(y)^{-1} f(x) \right) \right), \text{as } f \text{ is an anti-homomorphism}
\]

\[
= V \left(\left(f(y)^{-1} \right) f \left(x \right) \right) \geq t, \text{ as } f \text{ is an anti-homomorphism}
\]

Which implies that \(A \left(xy^{-1} \right) \geq t \).

Hence \(A_1 \) is a level subgroup of a fuzzy subgroup \(A \) of a group \(G \).

4. CONCLUSION

This study helps us to find out the nature of group homomorphism on the chains of level subgroups of fuzzy subgroups, on the T-Fuzzy subgroups, TL-Fuzzy subgroups etc.

5. ACKNOWLEDGEMENTS

We are grateful to the anonymous reviewers for their valuable comments and suggestions. We also express our thanks to Dr. Abeda Sultana (Professor Jahangirnagar University), Dr. Nirmal Kanti Mitra (Professor Independent University Bangladesh).