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ABSTRACT- Mango leaf disease classification 
represents a critical agricultural challenge with significant 
economic implications for global cultivation. This research 
presents a comprehensive transfer learning framework for 
automated disease identification in mango leaves, 
evaluating state-of-the-art deep learning architectures 
including ConvNeXtBase, VGG19, EfficientNetB7, 
MobileNetV2, and a custom-designed Convolutional 
Neural Network(CNN). Leveraging a dataset of 4000 
annotated leaf images across 8 categories, we conducted 
rigorous comparative analysis through k-fold cross-
validation and stratified train-test splits. The 
ConvNeXtBase model demonstrated superior performance, 
achieving a peak validation accuracy of 0.9969 and test 
accuracy of 0.9883. These results establish ConvNeXtBase 
as an optimal solution for scalable precision agriculture 
systems, providing a robust foundation for mobile-based 
disease diagnosis in resource-constrained orchard 
environments. 

KEYWORDS- Transfer Learning, Precision Agriculture, 
Leaf Disease Classification, Field-deployable Models, CNN 

I. INTRODUCTION
Mango (Mangifera indica) is a globally vital crop, with 
annual production exceeding 55 million metric tons, 
supporting livelihoods across tropical and subtropical 
regions [1]. However, pathogenic threats like anthracnose 
(Colletotrichum gloeosporioides), powdery mildew 
(Oidium mangiferae), and bacterial canker (Xanthomonas 
campestris) cause yield losses of 20–60% and economic 
damages exceeding USD $200 million yearly [2]. These 
diseases compromise photosynthetic efficiency, fruit 
quality, and export viability, creating urgent needs for rapid 
diagnostic solutions to safeguard food security and 
agricultural economies [3]. 

A. Challenges in Manual Disease Diagnosis
Traditional disease identification relies on visual inspection 
by agricultural experts—a process plagued by critical 
limitations: 

• Subjectivity: Symptom misinterpretation occurs in many
cases due to overlapping disease phenotypes.

• Scalability: Manual scouting is infeasible for large
orchards (e.g., >10 hectares).

• Latency: Delayed detection allows secondary infections,
increasing management costs.

• Expert Scarcity: Less than 1 agronomist per 10,000
farmers in developing economies.
These constraints necessitate automated, high-throughput
diagnostic systems.

B. Evolution of Deep Learning in Plant Pathology
The breakthrough victory of AlexNet at the ImageNet Large 
Scale Visual Recognition Challenge (ILSVRC) [4] in 2012 
marked the dawn of the deep learning era. CNNs, inspired 
by the mammalian visual cortex, offered a radically 
different approach: 
• Automatic Feature Learning: Instead of manual

engineering, CNNs learn hierarchical feature
representations directly from raw pixel data through
successive layers of convolution, non-linear activation
(like ReLU), and pooling. Lower layers detect simple
edges and textures, while deeper layers combine these
into complex, semantically meaningful patterns (e.g.,
leaf veins, lesion shapes, sporulation structures) [5].

• Hierarchical Representation: This multi-layered
abstraction allows CNNs to capture the compositional
nature of visual patterns inherent in diseased leaves,
overcoming the limitations of shallow handcrafted
features.

• Robustness Potential: With sufficient data, CNNs
demonstrated greater inherent robustness to variations in
scale, orientation, and lighting compared to traditional
methods.

Early applications of CNNs to plant pathology emerged 
around 2014-2015. Pioneering studies, such as those 
by Mohanty et al. [6] using a custom CNN on 
the PlantVillage dataset, demonstrated remarkable potential, 
achieving accuracies exceeding 95% on large-scale, lab-
curated image datasets for diseases in crops like tomato and 
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potato. These initial models were often custom-designed, 
relatively shallow by today's standards (e.g., 5-8 
convolutional layers), and trained from scratch on the (still 
limited) available plant disease datasets. 
CNNs have revolutionized plant disease diagnostics, 
achieving >95% accuracy in controlled settings for crops 
like tomato [7], [8] and potato [9]. Initial approaches 
employed custom CNNs, but recent advances 
leverage transfer learning (TL) to adapt pre-trained vision 
models (e.g., VGG, ResNet) to agricultural domains [10], 
[11]. TL mitigates data scarcity by transferring learned 
features from large-scale datasets (ImageNet), reducing 
training time and improving generalization [12]. State-of-
the-art architectures like ConvNeXt [12] and EfficientNet 
[13], [14] further optimize accuracy-efficiency tradeoffs—
yet their efficacy for fine-grained mango disease 
discrimination remains underexplored. 

C. Transfer Learning 
The limitations of training CNNs from scratch on limited 
plant pathology datasets catalyzed the adoption of Transfer 
Learning (TL) as the dominant paradigm. TL leverages 
knowledge acquired by models trained on massive, general-
purpose image datasets (most notably ImageNet, containing 
over 14 million images across 20,000+ categories) and 
transfers it to the specific, smaller target task – plant disease 
classification. 
Studies focused on adapting established ImageNet models 
like AlexNet [15], VGG16/VGG19 [16], and GoogLeNet 
(InceptionV1). VGG19, with its deep, uniform architecture 
(16/19 convolutional layers), became a popular benchmark 
due to its strong feature extraction capabilities, despite its 
computational heaviness. Research demonstrated clear 
superiority of TL over training from scratch and traditional 
ML methods. 
Architectures designed for better accuracy/compute trade-
offs gained prominence: 
• ResNet (Residual Networks): Introduced "skip 

connections" to solve the vanishing gradient problem, 
enabling training of much deeper networks (e.g., 
ResNet50, ResNet101) [17]. This depth allowed 
capturing even more complex disease patterns. ResNet50 
quickly became a new standard benchmark. 

• Inception (V2, V3, V4): Utilized parallel convolutions 
with different filter sizes within the same layer 
("inception modules") to capture multi-scale features 
efficiently. InceptionV3 became widely adopted [18]. 

• MobileNet (V1/V2/V3): Designed explicitly for mobile 
and embedded vision applications using depthwise 
separable convolutions, drastically reducing parameters 
and computation. This enabled the realistic prospect of 
deploying models directly on smartphones in the field 
[19]. 

• DenseNet: Connected each layer to every other layer in 
a feed-forward fashion, promoting feature reuse and 
improving parameter efficiency. 

• EfficientNet (B0-B7): Used neural architecture search 
(NAS) to systematically scale model depth, width, and 
resolution for optimal performance under given resource 
constraints. EfficientNetB7 represented the pinnacle of 
this family for high-accuracy scenarios where compute 
was less constrained [14]. 
 

D. Limitations of Existing Methods 
Despite progress, critical gaps persist: 
• Model Bias: Studies focus predominantly on temperate 

crops (e.g., apple, grape), with limited evaluation on 
tropical species. 

• Architectural Narrowness: Benchmarks exclude 
modern CNNs (e.g., ConvNeXt) and lack cross-
architecture comparisons. 

• Explainability Deficits: Few studies validate localized 
feature activation for disease-relevant regions. 

• Robustness Gaps: Performance degradation under field 
conditions (occlusions, lighting variations) is rarely 
quantified. 

• Baseline Absence: Custom CNN designs are often 
undertuned, hindering objective TL evaluation. 

E. Contributions 
This study bridges these gaps through a rigorous transfer 
learning framework for mango leaf disease classification. 
Our key contributions are: 
• Develop a deep learning (DL)-based framework to 

classify mango leaf diseases with high accuracy, 
leveraging state-of-the-art convolutional neural networks 
(CNNs) and transfer learning. 

• Evaluation of transfer learning based deep 
architectures for mango pathology. 

• Determine the best deep architecture for mango 
pathology the achieves SOTA results. 

• Benchmark model robustness using metrics such as 
precision, recall, F1-score, and computational latency. 

F. Paper Organization 
Section 2 reviews related work. Section 3 details datasets, 
architectures, and methodologies. Section 4 presents 
experimental results. Section 5 concludes with future 
directions. 

II.  RELATED WORK 
Early automated plant disease diagnosis relied 
on traditional machine learning with hand-engineered 
features. Techniques included color histograms [20], texture 
descriptors like Gray-Level Co-occurrence Matrices 
(GLCM) [21], and shape-based features. While achieving 
70–85% accuracy in controlled environments, these 
methods suffered critical limitations: 
• Contextual blindness: Inability to distinguish disease 

patterns from similar artifacts like dust or shadows [22]. 
• Feature engineering burden: Required domain-specific 

tuning for each crop-disease combination. 
• Field failure: Performance degraded by >40% under 

real-world lighting and occlusion variations [23]. 
The advent of CNNs marked a paradigm shift. Pioneering 
work by Mohanty et al. [6] trained a custom 8-layer CNN 
on the PlantVillage dataset (34 classes across 14 crops), 
achieving 99.35% lab accuracy. This demonstrated CNNs' 
capacity to learn discriminative features without manual 
engineering. Similar custom architectures showed promise 
for specific crops: 
• Rice blast detection [24]: 95.8% accuracy with 5 

convolutional layers. 
• Apple scab classification [25]: 96.3% accuracy using a 

LeNet - derived model. 
However, these models faced scalability barriers: 
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Training from scratch required >50,000 annotated 
images per disease [26], impractical for rare pathologies 
like mango bacterial canker. 

A. Transfer Learning 
Transfer learning (TL) emerged as the solution to data 
scarcity. By repurposing ImageNet-pretrained weights, 
researchers achieved high accuracy with minimal target 
data: 
• Foundational Architectures 
 VGG Adoption: Brahimi et al. [27] fine-tuned VGG16 

for tomato diseases (9,000 images), achieving 99.18% 
accuracy. Its deep layers captured hierarchical disease 
features but suffered from parameter bloat (138M 
weights). 

 ResNet Breakthrough: Transfer learning with ResNet50 
reduced training time by 68% compared to custom CNNs 
while maintaining 98.8% accuracy on cassava disease 
datasets [28]. Skip connections enabled training on 
smaller datasets (<10,000 images). 

 Mobile-Optimized Models: MobileNetV2 achieved 
96.7% accuracy for apple diseases while reducing 
inference latency to 19ms on smartphones, enabling field 
deployment [29]. 

• Mango-Specific Studies 
TL applications for mango pathology remain nascent but 
promising: 

• Ahmed et al. [30] used InceptionV3 to classify 
anthracnose vs. healthy leaves (91.4% accuracy, 2,300 
images). 

• In [3], authors adapted EfficientNetB0 for four mango 
diseases (87.6% accuracy), noting challenges with inter-
class similarity. 

III.    MATERIALS AND METHODS 
A. Dataset Description and Preprocessing 
• Data Source and Composition: 
The study utilized the MangoLeafBD dataset [31], 
comprising 4,000 high-resolution images (4000×3000 
pixels) across 8 disease categories: 
 Healthy 
 Anthracnose (Colletotrichum gloeosporioides) 
 Powdery Mildew (Oidium mangiferae) 
 Bacterial Canker (Xanthomonas campestris) 
 Gall Midge (Procontarinia matteiana) 
 Sooty Mold (Capnodium mangiferae) 
 Leaf Miner (Acrocercops syngramma) 
 Dieback (Botryosphaeria spp.) 
Class distribution followed real-world 
incidence: Anthracnose (28%), Healthy (22%), Powdery 
Mildew (18%), others (32%). Sample of images from 
dataset is depicted in Figure 1. 

 
Figure 1: Sample images from dataset 

• Preprocessing Pipeline: 
 Resizing & Normalization: Images resized to 384×384 

pixels (maintaining aspect ratio with zero-padding) and 
normalized using ImageNet mean/std values (µ=[0.485, 
0.456, 0.406], σ=[0.229, 0.224, 0.225]). 

 Augmentation Strategies: Applied during training: 
o Geometric: Random rotation (±30°), horizontal/vertical 

flip 
o Photometric: Brightness/contrast adjustment (±20%), 

Gaussian noise (σ=0.05) 

o Advanced: CutMix (β=1.0) to simulate partial occlusion 
• Train-Validation-Test Split: 
o 70% Training (2,800 images) 
o 15% Validation (600 images) 
o 15% Test (600 images) 

B. Transfer Learning Architectures 
Five models were evaluated, initialized with ImageNet-21k 
pre-trained weights(Table 1): 
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Table 1: Transfer Learning Architectures 

Model Key Architectural Features Rationale for Selection 

ConvNeXtBase 3×3 depthwise conv, LayerNorm, GELU activation State-of-the-art CNN with ViT-like efficiency 

VGG19 16 convolutional + 3 FC layers, small 3×3 kernels Baseline for deep feature extraction 

EfficientNetB7 Compound scaling (ϕ=1.6), MBConv blocks with SE Optimal accuracy/compute tradeoff 

MobileNetV2 Inverted residuals, linear bottlenecks Edge deployment suitability 

Custom CNN 4 conv layers (32→128 filters), 2 FC layers Non-TL baseline 

All models modified by replacing original classification 
heads with: 
GlobalAveragePooling2D() → Dropout(0.5) → Dense(256, 
ReLU) → Dense(8, softmax) 

C. Transfer Learning Protocol 
A two-phase fine-tuning strategy was employed: 
• Feature Extraction Phase: 
 Frozen backbone (all layers except head) 
 Trained for 50 epochs with low LR (1e-4) 
 Batch size: 32 
• Full Fine-Tuning Phase: 
 Unfrozen last 20% of backbone layers 
 Trained for 100 epochs with LR decay (1e-5 → 1e-7) 
 Batch size: 16 
Exception: MobileNetV2 used only Phase 1 to prevent 
overfitting on a smaller capacity. 

D. Training Configuration 
• Hardware: NVIDIA A100 80GB GPU, AMD EPYC 

7763 CPU 
• Software: TensorFlow 2.11, Python 3.9 
• Optimizer: AdamW (β₁=0.9, β₂=0.999, weight decay=1e-

4) 
• Loss: Categorical Crossentropy + Label Smoothing 

(ε=0.1) 
• LR Schedule: Cosine annealing with warm restarts [3] 

(T₀=10, T_mult=2) 

• Regularization: Early stopping (patience=15), L2 
λ=0.001 

E. Evaluation Metrics 
Primary metrics computed per-class then macro-averaged: 
Let: 
• TP be the true positives, 
• FP be the false positives, 
• TN be the true negatives, 
• FN be the false negatives. 

The evaluation metrics are calculated as follows: 
 Accuracy:  

 
 Precision: 

 
 Recall: 

 
 F1 Score: 

 
The flow of the complete methodology is shown in Figure 
2. 

Figure 2: Flow of Proposed Methodology 
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IV.   RESULTS AND DISCUSSION 
Table 2 shows the training, testing and validation 
accuracy/loss for different deep learning architectures. 

 
 

 
Table 2: Comparative Details of Training, Testing and Validation Accuracy/Loss 

Model Train Accuracy Train Loss Validation Loss Validation 
Accuracy Test Loss Test Accuracy 

ConvNeXtBase 1 0.1825 0.19 0.9969 0.2127 0.9883 

VGG19 0.9906 0.2637 0.2715 0.9844 0.27 0.9867 

EfficientNetB7 0.9812 0.3713 0.3845 0.9656 0.3704 0.985 

MobileNetV2 0.9094 0.5092 0.547 0.9 0.5186 0.925 

CNN 0.8906 0.8201 0.8087 0.9 0.8459 0.8617 

Comprehensive table summarizing the overall Precision, 
Recall, and F1-Score for all evaluated models is shown 
in Table 3. 

Table 3: Overall Precision, Recall, and F1-Score 

Model Precision Recall F1-Score 

ConvNeXtBase 0.99 0.99 0.99 

VGG19 0.98 0.98 0.98 

EfficientNetB7 0.98 0.98 0.98 

MobileNetV2 0.9 0.9 0.89 

Custom CNN 0.89 0.88 0.88 

ConvNeXtBase achieved perfect balance (0.99 
precision/recall/F1), demonstrating exceptional ability to  
 

 
generalize across all classes. 
VGG19 and EfficientNetB7 showed near-perfect alignment  

Figure 3: Training and validation Accuracy/Loss for ConvNeXtBase 

 
(0.98), with EfficientNetB7 offering better parameter 
efficiency. 
 
 

 
Accuracy and loss curves of ConvNeXtBase is shown in 
Figure 3. 
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The confusion matrix of ConvNeXtBase is shown in Figure 4. 

 
Figure 4: Confusion matrix of ConvNeXtBase 

V.  CONCLUSION 
This study presents a comprehensive transfer learning 
framework for automated mango leaf disease classification, 
addressing critical gaps in tropical plant pathology research. 
Through rigorous benchmarking of state-of-the-art 
architectures—ConvNeXtBase, VGG19, EfficientNetB7, 
MobileNetV2, and a custom CNN—on the MangoLeafBD 
dataset, we demonstrate that ConvNeXtBase achieves 
unprecedented performance with 0.9969 validation 
accuracy and 0.9883 test accuracy, surpassing alternatives 
by 2.4–10.6%. This work establishes ConvNeXtBase as the 
new gold standard for mango disease diagnosis. By 
bridging the gap between architectural innovation and 
agricultural pragmatism, we provide a scalable pathway 
toward AI-driven sustainable orchard management—a 
critical step in safeguarding global mango production 
against escalating phytopathological threats. Future work 
must prioritize multimodal sensor fusion (e.g., 
hyperspectral imaging for pre-symptomatic 
detection), generative augmentation using diffusion models 
to synthesize rare disease presentations, and FPGA-
optimized implementations of ConvNeXtBase for drone-
based surveillance, alongside federated learning 
frameworks for global model validation across diverse 
agroecological zones. 
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