
International Journal of Innovative Research in Engineering & Management (IJIREM) 
                                                                                                 ISSN: 2350-0557, Volume-2, Issue-5, September- 2015   

 
 

1 
 

GENERAL MATHEMATICAL MODEL FOR 
INVESTIGATION OF CYLINDRICAL AND CONICAL 

WORMS, WORM GEARS AND FACE GEARS 
  

Prof. Dr. Illés Dudás  
D.Sc., professor emeritus  

Institute of Manufacturing Science, 
University of Miskolc, H-3515 

Miskolc, Egyetemváros, Hungary,  
 
 

 
 

ABSTRACT 
The objective of this publication is based on the results of 
kinematical geometry and toothing theory generalization of 
geometric correct production of worm surfaces (e.g. turning, 
milling, grinding), production geometry analysis of tools, the 
mathematical defining of the geometric and connection relation. 
Our purpose is to be able to define every thread surface ion one 
common system so that they could be produced in a modern 
manufacturing system.  
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1. INTRODUCTION 
One the most modern types of cylindrical helicoidal surfaces is 
the worm generated using a circular profile tool. 
 

 
 

Figure 1. Most frequent applications of helicoidal surfaces  
[3, 4] 

 
The investigation of geometric problems related to the 
manufacture of cylindrical helicoid surfaces is best carried out in a 
general system. This general system makes it possible to discuss 
cylindrical worm surfaces, their different manufacturing methods 
and generating tools. 
 

2. INVESTIGATION OF GEOMETRIC 
PROBLEMS WHEN MANUFACTURING 
CYLINDRICAL HELICOID SURFACES 
USING GENERAL MATHEMATICAL-
KINEMATIC MODELS 

First, P1h, the general transformation matrix, should be 
determined, thus solving the connection between the coordinate 
systems belonging to the generating tool and the generated 
surface, including the kinematics of generation. Coordinate 
systems used in this investigation and their relationships are 
shown in Figure 2. 
 

 
 

Figure 2: Theory of manufacturing processes during general 
investigation: relative positions of cylindrical helicoid surfaces 
 
During our investigations the kinematics of generation was 
handled so that the helicoid surface followed a thread path and the 
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tool surface performed a rotary motion on the left side of the 
thread profiles; the lead of thread and generator curve together 
with signs should be taken into consideration.  
When discussing geometric problems of manufacturing in general 
it is necessary to determine generally valid rules for generation of 
the cylindrical thread surface [5]. 
The position vector 

gr
  of the generating curve in the coordinate 

system KS(  ,, ) is given as a function. This generating curve 
can be the edge of tool (eg in lathe turning) or the contact curve 
(eg in grinding) [4].  To formulate the equation of the generating 
curve, from the practical point of view let the parameter   be 
chosen as an independent variable. In this way the parametric 
vector function of the generating curve is found to be: 
 

       gr
  = ξ (η) i


 + η j

  + ξ (η) k


.                        (1) 

 
The generating curve parametric equation 

gr
  is carried by the 

generating curve parametric equation KS(  ,, ) the coordinate 

system is forced on the thread path along axis   with parameter 
p, so the generating curve will describe a thread surface in 
coordinate system K1F(x1F, y1F, z1F) which, performed before this 
movement, coincides with the KS coordinate system (see Figure 
3). 
 

 
 

Figure 3: The generating curve of the thread surface in K1F 
coordinate system 

 
The thread surface described by the generating curve 

gr
  can be 

determined in K1F(x1F, y1F, z1F) coordinate system as: 
 

           r 1F = M1F,S gr
 ,    (2) 

 

          M1F,s = 
cos sin 0 0
sin cos 0 0

0 0 1
0 0 0 0

p

 
 
 
 
 
 

 
 



.   (3) 

 
 
 
 

Therefore, the general equation of the cylindrical worm surface is: 
 

  1

1

1

( ) cos sin
( ) sin cos
( )

F

F

F

x ξ η η
y ξ η η
z ξ η p

    
    
   

 
 


.      (4) 

 
It can be seen from the structure of transformation matrix 

SFM ,1
 

and the general basically equation of the worm surface (3) that the 
generating curve 

gr
  and worm parameter p determine the worm 

surface. 
The generator curve 

gr
  has a decisive role in the case of tool 

surface generation too. During generation of the tool surface, the 
generator curve can be the meridian curve or the contact curve. In 
this case the 

gszr  curve is interpreted in the K20(x20, y20, z20) 

coordinate system using y20 as a parameter, so its form is: 
 

gszr = x20(y20) i
+y20 j


 + z20(y20) k


.        (5) 

 
Rotating 

gszr  generating curve with the K20(x20, y20, z20) 

coordinate system round the z20 axis the 
gszr  curve will describe 

the tool surface in the K2F(x2F, y2F, z2F) coordinate system (see 
Figure 4). 
The tool surface determined this way could be written as: 
 
     

2Fr  = M2F,20 gszr .       (6) 

 
 

Figure 4: The tiler surface by generation curve of tool (
gszr ) in 

the K2F coordinate system 
 
Where: 
 1  surface described by generating curve, 
 2  basic situation, 
 3  situation after angular displacement  , 

 

M2F,20 = 
cos sin 0 0
sin cos 0 0

0 0 1 0
0 0 0 1

 
 
 
 
 
 

 
     (7) 
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Therefore, the equation of the circular symmetrical tool surface is: 
   

 2 20 20 20

2 20 20 20

2 20 20

( )cos sin
( )sin cos
( )

F

F

F

x x y ψ y ψ
y x y ψ y ψ
z z y

  
  
 

     (8) 

 
We can conclude the previously discussed facts that to determine 
any surface, be it either a worm surface or a tool surface, 
knowledge of its generating curve is necessary. In order to 
determine the generating curve it is enough to know some of the 
meshings for the other surfaces, either that of the worm or the tool 
surface. When the generating curve is known in the coordinate 
system of the surface sought (eg. in the case of a turned worm 
surface) than the surface can directly be determined using either 
equation (4) or (8) any system can be determined by transforming 
it into the proper coordinate system. 
 
3. POSSIBLE USES OF THE MODEL 

DESCRIBED  
This model is suitable for design of manufactured helicoidal 
surfaces with single or multiple edge tools of determined or 
undetermined edge geometry as well as for the design of the 
manufacturing tools needed. After proper choice of parameters a, 
b, c, γ, α (shown in Figure 2) it is an appropriate method to 
determine worm surface of any special profile, even non-
standardized shape. 
The worm surface is the relative kinematic wrapping surface of 
the manufacturing tool surface. 
During their relative displacement the two surfaces remain in 
contact along a spatial curve. The general law for contact of 
elements is valid for any arbitrary point of this contact curve. It 
can be written as: 
 

1 (12) (2) (12) 0( ) n v n v   
    ,       (9) 

 
Knowledge of the contact curve makes it possible to determine the 
tool surface (direct case) as well as that of the worm surface 
(indirect case). 
 
3.1. Designing the tool needed to manufacture a given worm 

surface (direct case) 
 
Given data is ),(11 FF rr   , the two parametric vector-scalar 
function in the coordinate system K1F(x1F, y1F, z1F) for the surface 
to be generated. 
Let normal vector n 1F be determined. 
 

                                        n 1F= 1 1F Fr r
η

 


 

 


.                            (10)          (10) 

The relative velocity of the two surfaces can be determined in 
coordinate system K2F using the transformation between 
coordinate systems K1F for worm and K2F for tool: 

 

      v 2F
(12) = d

dt
 r 2F = d

dt
 (M2F,1F) r 1F.     (11) 

 
The vector )12(

2v F

  should be transformed into coordinate system 
K1F(x1F, y1F, z1F) to determine the necessary tool surface, so: 
 

v 1F
(12) = M1F,2F v


2F

(12) = M1F,2F
d
dt

(M2F,1F) r 1F = 
1 1h Fr P ,                    

                                                                                                 (12) 
where 
 

P1h = M1F,2F d
dt

(M2F,1F) (13)                                            

 
the matrix for kinematic generation.  
 
Solving the equation for one of its internal parameters (eg  ): 
 

            n 1F( η , )v 1F
(12)( η , ) = 0                   (14)                                          

 
Applying solution: 
 

                        
1Fr  = 

1Fr ( η , )                             (15)                                                 

 
the equation of contact curve between surfaces is obtained in the 
form: 
 

 
1Fr  = 

1Fr  [η(),] = 
1Fr ()                   (16) 

which is suitable for transformation of: 
 
      

2 Fr ( ) = M2F,1F 1Fr ( )   (17) 
 
into the tool generating system which is the generating curve of 
the tool. 

FFM 1,2
 and 

FFM 2,1
 are the transformation matrices 

between coordinate systems K1F and K2F. 
 
3.2. Determination of worm surface that can be manufactured 

using a given tool surface (indirect case) 
 
The procedure is similar to the steps carried out in the direct case, 
but the direction of transformation is the opposite. 
Known data: 
 

    
2 Fr  = 

2 Fr (y
20

,),                              (18) 

        

                   2 Fn  = 2 2

20

F Fr r
y
 


 

 


,  (19)  

 
          

2Fv  = P2h 2 Fr ,                 (20) 
 
where 
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                  P2h = M2F,1F d
dt

(M1F,2F)                     (21) 

 
the matrix for kinematic generation for inverse operation. 
Solving the following system of equations: 
 

          2Fn  2Fv  = 0       (22) 

 
and 
 

       
1Fr  = M1F,2F 2 Fr        (23) 

 
Solving these equations, enables the optiman tool profile 
geometry to be determined. 
The position vectors 

Fr2

  or 
Fr1

  describe the searched surfaces 
obtained in the direct or the indirect case; these surfaces can be 
generated using modern CNC machine tools or traditional 
machine tools supplied with additional equipment. 
 
4. MATHEMATICAL GENERATION OF 

HELICOIDS THREAD 
The tooth surface of a conical worm, as an element of a spiroid 
drive, can be similarly generated as with cylindrical worms, but 
linked to axial displacement of the tool (pa), depending on the 
measure of conical shape of the worm, a tangential displacement 
(pt) of the tool is necessary as well. All this can be seen in Figures 
5, 6 and 7 which show the types of helicoids and their equations 
too. Similarly to cylindrical worms with ruled surfaces, on the 
surfaces of spiroid worms several types of helicoids – involute, 
Archimedian or convolute – can be differentiated. But non-ruled 
conical worm surfaces can be investigated too. 
According to present practice the teething of face gear is 
generated, using a worm hob with a surface equivalent to a worm 
wrapping surface of a conical worm. This method is called direct 
generation in technical literature. The involute worm gear drive 
with ground ruled surface has a great advantage, namely the 
identity of surfaces can be realized by simple machining 
technology. When the thread surface of the worm or worm gear 
milling cutter is machined using a conical or ring shape grinding 
wheel the precision of the profile surfaces cannot be easily 
guaranteed. 
 

 
Figure 5. Generator of conical Archimedian helicoid in 

oblique position 

The equation of conical Archimedian helicoid surface is: 
 

                            
1Fr =

1

1

sin
cos

sin a

B
B

u β p
1

  
   
   
 
 





                                    (24) 

 
Figure 6. Generator of conical involute helicoidal surface in 

oblique position 
 

The equation of conical involute helicoidal surface is: 
 

                            
1Fr =

1

1

sin cos
cos sin
sin

a

a

a

B r
B r

u β p
1

     
     
   
 
 





                (25)

   

where ra = pactg  pt 
 

 
Figure 7. Generator of conical convolute helicoidal surface in 

oblique position 
 
Equation of conical convolute helicoidal surface is: 
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1Fr =

1

sin cos
cos sin
sin

t

t

a

B r
B r

u β p
1

    
    
   
 
 

 
 



                      (26) 

 
Regarding Figures 5, 6, and 7, it is possible to write: 
 
                   B1 = ucos + pt                      (27) 

                                                                
                          pt = patgδ1                                     (28) 
 
4.1. General ruled surface on conical worm 
 
Using a suitable equation to define any oblique point fitted on any 
type of conical worm surface, such a formula for the position 
vector is obtained as can be suitable to describe the generally 
valid form for all the three types of conical worm surfaces (Figure 
8): 
 

          
1Fr  = 

1

1

sin cos
cos sin
sin a

B r
B r

u β p
1

    
    
   
 
 

 
 



   (29) 

 
The above generally valid formula defines: 
 














surface helicoid convolute rrr-
involute 0p- βctgprr

nArchimedia 0r of casein 

0a

taa
                                (30)        (30) 

For a helicoidal surface, by substituting 1=0 in all three cases, the 
corresponding cylindrical worm is obtained. 
 

 
Figure 8. Summary of generation of ruled conical worm 

surfaces 
 
5. REALIZATION OF THE GENERAL 

MATHEMATICAL MODEL 
By bringing together the model created to investigate cylindrical 
helicoidal surfaces and their tools prepared for investigation of 
conical helicoidal surfaces and using appropriate parameters (γ=0) 
for connection analysis of drive pairs, a general kinematic model 
can be obtained (see Figure 9), suitable for treatment by a single 
mathematical model. 

The transformation matrixes between the coordinate systems are: 
 

M1,1F = 
1

1

1

1

cos sin 0 0

sin cos 0 0

0 0 1

0 0 0 1
axz

 
 
 
  
  

 

   

    (31) 

M1F,1 = 
1 1

1 1

cos sin 0 0
sin cos 0 0

0 0 1 +
0 0 0 1

axz

 
  
 
 
 

 
   

 
 

M0,1=
1 1

2 2
1 1 1

1 0 0 0

0 cos sin 0

0 sin cos +

0 0 0 1
a t

δ δ

δ δ p p

 
 
 
 
  
 
  



   

  (32) 

M1,0 = 2 2
1 1 1 1

2 2
1 1 1 1

1 0 0 0

0 cos sin sin +

0 sin cos cos +

0 0 0 1

a t

a t

δ δ δ p p

δ δ δ p p

 
 
   
 
   
 
  





  

 
 

M2F,2 = 
2 2

2 2

cos sin 0 0
sin cos 0 0

0 0 1 0
0 0 0 1

 
 
 
 
 
 

 
      

   (33) 

M2,2F = 
2 2

2 2

cos sin 0 0
sin cos 0 0

0 0 1 0
0 0 0 1

 
  
 
 
 

 
          

              
    

0

cos 0 sin cos
0 1 0

sin 0 cos sin
0 0 0 1

K ,

c
a

M
c

  
 
 
  
 
 

  

  

 

  (34) 

0

cos 0 sin
0 1 0

sin 0 cos 0
0 0 0 1

,K

c
a

 
  
 
 
 

 

 
M
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2

1 0 0 0
0 cos sin 0
0 sin cos 0
0 0 0 1

,K

 
 
 
 
 
 

 
 

M
 

   (35) 

2

1 0 0 0
0 cos sin 0
0 sin cos 0
0 0 0 1

K ,

 
  
 
 
 

 
 

M
 

 
The direct transformation matrices between rotating coordinate 
systems are: 
 

M2F,lF = M2F,2
.M2,K

.MK,0
.M0,1

.M1,1F,   (36) 
 
                         M1F,2F = M1F,1

.M1,0
.M0,K

.MK,2
.M2,2F.              (37) (37)      (37) 

 

 
 

Figure 9. Correlation between coordinate systems for general 
investigation of machining theory of cylindrical and conical 

helicoidal surfaces 
 

On Figure 9 the a and δ1 could be changing depending of the 
manufacturing technology. 
The solution of the direct task (surface of workpiece is known) 
when knowing 1Fr


, the surface No2 and point of contact line is 

sought using equations (10), (11), (12), (13), (14), (15), (16), (17) 
and (18). Further, the matrices depending only on a kinematic 
relation can be determined as: 
 

2 1F , Fd
dt

M                                    (38)                     

                2 1
1 1 2

F , F
a F , F

d
dt

 
M

P M      (39) 

 
matrixes. P1a is the matrix for the kinematic generation of the 
general model. 
In solving the inverse problem, only the direction of 
transformation changes into the opposite one. Known: 

 

      2 2 20( )F Fr r y ,   .     (40) 

 
The surface No1 according to the theory of enveloping surfaces 
can be derived by differentiating with respect to the movement 
parameter the series of surfaces generated by 2Fr

  during its 
movement, while contact curve can be obtained by the 
simultaneous solution of equations: 
 
                                          21

2 2 0F Fn v 
              (41) 

       
1 21 2F , FF Fr r 

 M       (42) 
 
in the K1F coordinate system, where: 
 
          2 2

2
20

F F
F

r rn
y
 

 
 

 
 ;       (43) 

         (21)
22 2aF Fv r 

 P .      (44) 

 
To obtain the solution of this problem the P2a matrix should be 
determined as: 
 

 1 2
2 2 1

F , F
a F , F

d
dt

 
M

P M .     (45) 

 
The model may be used to investigate conditions for 
meshing for both conical and cylindrical helicoidal surfaces 
with the tool having its body as the block of rotation. 
Using this model it is possible to determine the contact 
curve starting from a known 1Fr  (No1 workpiece) (the so-
called direct problem solution) as well as starting from 
known 2Fr

  (No2 tool). We shall see further on in the text 
that it is also possible to start from a given contact curve as 
a generating curve to determine the tool surface No2 
according to equation (17) and the surface of workpiece 
No1 as equation (22) describes it [1, 2, 3, 4, 5, 6, 7]. 
The surface of workpiece No1 is a cylindrical or conical 
basic surface having a thread curve fitted with an arbitrary 
generator curve (the axial section of thread). 
For surface of tool No2 it is useful to define a surface of 
rotation, but it can be any other surface too, for example a 
single cutting edge tool with a cutting edge determined by 
2=const. The frequently used types of workpiece and tool 
are shown in Table 1 in a tabular form giving the value of 
kinematic parameters which in some cases can be equal to 
0. 
The Figure 10 presents a typical example of the machining 
positions shown in Figure 10. The determination of the 
parameters in these two cases (Figure 10.a, b) and the 
presentation in the figure are found by applying the general 
model.  
For many of the technological and kinematic positions 
illustrated given in Figures 10 and 11 it can be shown that 
the transformation (M1F,2F, M2F,1F) and the kinematic 

a≠const. 

δ1≠const. 
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generation matrices (P1a, P2a) created for the general model 
contain all possible situations. 
So, by substitution of suitable parameters, matrices can be 
obtained both for cylindrical and for conical worm gear 
drives. Naturally, matrices valid for other positions can also 
be generated as well. 
 

 
a) Model of cylindrical worm gearing 

 

 
b) Model of spiroid worm gearing 

 

          
c) Grinding model of cylindrical worm 

 
Figure 10. Main areas of application of general model [3, 4] 

 
Using this modell worm gear drives and tools can be produced 
(Figure 12). 
 

 
a) 

 
b) 
 

Figure 11. Worm (a) and tool (b) production 
Difi CAD Mérnökiroda Ltd., Director: Dr. Illés Dudás, D.Sc. 

 
CONCLUSION 
I have worked out a mathematical model in which all conical and 
cylindrical thread surfaces can be examined based on production 
geometry. Changing the data of the given drive pair it is possible 
to examine every drive pair based on mathematical analysis and 
production geometry.  
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APPENDIX 
 

a, b, c    
The coordinates of the origin (O2) 
the tool coordinate system in the K0 
coordinate system 

1  

Angular displacement of the 
helicoid (parameter for angular 
displacement, for meshing and for 
movement); 

2  Angular displacement of the tool 
(milling cutter or grinding wheel); 

da1 (mm) Addendum cylinder diameter of the 
worm 

dg1 (mm) Pitch cylinder diameter of the worm 
dfl (mm) Root cylinder diameter of the worm 

hf1 (mm) Dedendum height of the worm 
tooth 

ha1 (mm) Addendum height of the worm 
tooth 

K0 (x0, y0, z0)  Stationary coordinate system 
affixed to machine tool 

K1F (x1F, y1F,z1F)  Rotating coordinate system affixed 
helicoid surface 

K2F (x2F, y2F,z2F)  Rotating coordinate system fixed to 
worm gear 

Ks (,,)  Tool coordinate system of 
generating curve of helicoid surface 

m (mm) Axial module 

MlF,2F  Coordinate transformation matrix 
(transforms K2F to K1F) 

M2F,1F  Coordinate transformation matrix 
(transforms K1F to K2F) 

n1F  Unit normal vector of helicoid 
surface in coordinate system K1F 

n2F  Unit normal vector of tool surface 
in coordinate system K2F 

O0, O1, O2, O1F, 
O2F 

 Origins of coordinate systems 
related to their subscripts 

p  Screw parameter of the helix on 
worm 

pt  Tangential screw parameter 
pa  Axial screw parameter 

P1h, P1k, P1s, 
P1a 

 
Kinematic projection matrix, for 
direct method (cylindrical,   
conical, general) 

px (mm) Axial pitch of the worm 
pz (mm) Lead of thread 
S1 (mm) Tooth thickness of the worm 

S1F (mm) Tooth thickness of dedendum of the 
tooth of the worm 

v1F(1,2) 
(m/ 
min-1) 

Velocity vector of helicoid and tool 
surfaces in the K1F   
coordinate system 

v2F(1,2) 
(m/ 
min-1) 

Velocity vector of helicoid and tool 
surfaces in the K2F  
coordinate system 

ax (mm) 
Radius of tooth profile of worm 
having circular profile in axial   
section 

 ,,   Axes of the coordinate system (Ksz) 
of the tool 

i21  i21 = 2/1 gearing ratio; 

szr   
The equation of the tool edge or 
generating curve in the tool 
coordinate system Ksz 

Fr1
   The position vector of a point fitted 

on worm surface 

2Fr   The position vector of an oblique 
point fitted on tool surface 

o  Lead angle on worm reference 
cylinder 

α  

The inclination of the tool to the 
profile of the helicoid measured in 
characteristic section (eg grinding 
of involute worm using plane flank 
surface tool); 

z1  Number of teeth on worm 
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Table 9. The most frequently used types of workpiece and tool surfaces characterized by general model parameters 

Movement geometrical feature 
a c    Pa Pr Tool type is 2 Type of workpiece 1. 

D
is

c 
ty

pe
 m

ill
in

g 
 

C
yl

in
dr

ic
al

 w
or

m
 ZA >0 0 0 0 0 0 0 

ZI* >0 0 0 0 0 0 0 
ZI** >0 0 >0 0 0 0 0 
ZN >0 0 0 0 0 0 0 
ZT >0 0 0 0 0 0 0 
ZK 0 0 0 0 0 0 0 

C
on

ic
al

 w
or

m
 

KA >0 0 0 0 >0 0 >0 

KI* >0 0 0 0 >0 0 >0 
KI** >0 0 >0 0 >0 0 >0 
KN >0 0 0 0 >0 0 >0 
KT >0 0 0 0 >0 0 >0 
KK >0 0 0 0 >0 0 >0 

Axial flank surface >0 0 0 0 0 0 0 

Radial and diagonal flank surface >0 0 0 0 >0 0 >0 

Pi
n 

ty
pe

 g
rin

di
ng

  C
yl

in
dr

ic
al

 w
or

m
 ZA >0 0 -90 0 0 0 0 

ZI* >0 0 -90 0 0 0 0 
ZI** - - - - - - - 
ZN >0 0 -90 0 0 0 0 
ZT >0 0 -90 0 0 0 0 

ZK >0 0 -90 0 0 0 0 

C
on

ic
al

 w
or

m
 

KA >0 0 -90 0 >0 0 >0 
KI* >0 0 -90 0 >0 0 >0 
KI** - - - - - - - 
KN >0 0 -90 0 >0 0 >0 
KT >0 0 -90 0 >0 0 >0 

KK >0 0 -90 0 0 0 0 
Axial flank surface 0 0 -90 0 0 0 0 

Radial and diagonal flank surface 0 0 -90 0 >0 0 >0 

St
ra

ig
ht

 c
up

  

C
yl

in
dr

ic
al

 w
or

m
 ZA >0 0 >0 0 >0 0 0 

ZI* >0 0 >0 0 0 0 0 
ZI** - - - - - - - 

ZN >0 0 >0 0 0 0 0 
ZT >0 0 >0 0 0 0 0 
ZK >0 0 >0 0 0 0 0 

C
on

ic
al

 w
or

m
 

KA >0 0 >0 0 >0 0 >0 

KI* >0 0 >0 0 >0 0 >0 
KI** - - - - - - - 
KN >0 0 >0 0 >0 0 >0 
KT >0 0 >0 0 >0 0 >0 

KK >0 0 >0 0 >0 0 >0 
Axial flank surface >0 0 >0 0 0 0 0 

Radial and diagonal flank surface >0 0 >0 0 >0 0 >0 

 


