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ABSTRACT- This paper constructs a series of linear 

trend-free circular (LTFC) partially balanced incomplete 

block (PBIB) designs for any block size k≥2. The proposed 

designs satisfy the requirements of PBIB designs. 

Theoretical proofs supporting the construction methods are 

presented, along with illustrative examples to demonstrate 
the proposed designs. 

KEYWORDS- Linear Trend-Free Design; Circular 

Block Design; Partially Balanced Incomplete Block 

Design; Orthogonal Polynomial Trend. 

I. INTRODUCTION 

In experimental studies, heterogeneity among experimental 
units often affects the accuracy of treatment comparisons. 

Block designs are commonly used to control such 

variability when heterogeneity exists in a single direction. 

However, in many practical experiments, treatments are 

applied sequentially over time or space within blocks, 

which may introduce systematic trend effects. To overcome 

this problem, Bradley and Yeh [5] proposed the concept of 

trend-free block (TFB) in which treatment effects are 

orthogonal to polynomial trend effects, allowing unbiased 

estimation. Several researchers have contributed to the 

development of trend-free and trend-resistant incomplete 

block designs. Gupta et  al. [7] constructed linear trend-free 
(LTF) partially balanced incomplete block (PBIB) designs 

of block size three, while Bhowmik et al. [1] developed 

linear trend-resistant PBIB designs for specific parameter 

settings. Motivated by these studies, the present paper 

proposes a series of linear trend-free circular partially 

balanced incomplete block (LTFCPBIB) designs for any 

block size k≥2. The proposed designs satisfy all PBIB 

design requirements and ensure resistance to linear trend 

effects. TFB design has been extensively studied in the 

literature by Bhowmik et al. [2]; Lal et al. [8]; Yeh and 
Bradley[10]. Additionally, foundational studies on PBIB 

designs provide structural support for developing such 

constructions, particularly the works of Bose and Nair[3]; 

Bose and Nair[4]. 

Let us consider v treatments be applied to plots arranged in 

b blocks, each of size k, 𝑘 ≤ 𝑣. Assume a common 

polynomial trend of order p exists across the k positions, 

which can be represented using orthogonal polynomials 

𝜙𝛼(𝑙), 1 ≤ 𝛼 ≤ 𝑝, on 𝑙 = 1, 2, … , 𝑘, where 𝜙𝛼(𝑙) is a 

polynomial of degree 𝛼. Let the first block include the first 
k observations, the second block include the next k 

observations and so on. The polynomials 𝜙1(𝑙), 𝜙2(𝑙), …, 

𝜙𝑝(𝑙) satisfy  

 ∑ 𝜙𝛼(𝑙) = 0𝑘
𝑙=1  and 

 ∑ 𝜙𝛼(𝑙)𝜙𝛼′(𝑙) = 1 if 𝛼 = 𝛼′ 𝑘
𝑙=1  

  = 0 if 𝛼 ≠ 𝛼′ ; 𝛼, 𝛼′ = 1, 2, … , 𝑝. 

The mathematical model for observation at position l in 

block j, 1 ≤ 𝑗 ≤ 𝑏, is  

𝑌𝑗𝑙 = 𝜇 + ∑ 𝑑𝑗𝑙
𝑖𝑣

𝑖=1 𝜏𝑖 + 𝛽𝑗 + ∑ 𝜙𝛼𝜃𝛼 + 𝜀𝑗𝑙
𝑝
𝛼=1  (1) 

where  𝜇 represent a general effect, 𝜏1, 𝜏2, …, 𝜏𝑣 are the 

treatment effects, 𝛽1, 𝛽2, …, 𝛽𝑏  are the block effects, 𝜃1, 

𝜃2, …, 𝜃𝑝 are the trend effects. 

Moreover, 𝑑𝑗𝑙
𝑖 = 1, if treatment i is assigned to position l 

in block j; otherwise, it is 0. When 𝑝 = 1 in (1), the design 

is referred to as a Linear Trend-Free Block design. 

According to Lin and Dean [9], the polynomials 𝜙1(𝑙) 

satisfy the condition 𝜙1(𝑙) = −𝜙1(𝑘 − 𝑙 + 1). In addition, 

𝜙1((𝑘 + 1)/2) = 0, when 𝑘 is odd.  

Let a block design 𝑑 will be represented by a 𝑘 × 𝑏 array 

using symbols 1, 2, …, v where rows correspond to blocks 

and columns to positions. Thus, if the entry in cell (𝑗, 𝑙) of 

𝑑 is 𝑖, this indicates that treatment i is assigned to position 

l in block j under design d. Let 𝐷(𝑣, 𝑏, 𝑘) denote the set of 

all connected block designs involving v treatments arranged 

in b blocks with k positions each.  

Let 𝑑 ∈ 𝐷(𝑣, 𝑏, 𝑘) be a design and 𝑆𝑑𝑖𝑙denote the number 

of times treatment i appears in position 𝑙. It has been shown 

by Chai and Majumdar [6], that a design is linear trend-free 
block (LTFB) design if 

∑ 𝑆𝑑𝑖𝑙
𝑘
𝑙=1 𝜙1(𝑙) = 0; 𝑖 = 1, 2, . . . , 𝑣  (2) 

where 𝜙1(𝑙) is the orthogonal polynomials of degree 1; 𝑙 =
1, 2, . . , 𝑘. 

II. PROPOSITION 

A proposition is presented to be used in the later part of 

the section, as follows. 

Proposition 1 Developing an initial block (∅1, ∅2, … , ∅𝑘); 

∅𝑖𝜖 module of v where none of ∅′𝑠 are equal to each other, 

a PBIB design with 𝑣 = 𝑏, 𝑟 = 𝑘, 𝜆𝑖; 𝑖 = 1, 2, . . . ,
𝑣−1

2
 (for v 

odd) or  
𝑣

2
 (for v even) based on a Circular Association 

Scheme where any two elements at the distance i  are the ith  

associate with each other, can be constructed. 

Proof: Consider any two treatments say 𝜃 and 𝜃 ± 𝑖;  𝑖 =

1, 2, 3, … ,
𝑣−1

2
 (for v odd) or  

𝑣

2
 (for v even). Then 𝜃 is the ith 

associate of 𝜃 ± 𝑖 and vice versa. 
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For any treatment 𝜃, all the ith associates to 𝜃 are 𝜃 ± 𝑖. 
Therefore, the number of treatments that are the ith 

associates of 𝜃 are 𝜃 ± 𝑖  

i.e., 𝑛𝑖 = 2 ∀ 𝑖 = 1, 2, . . . ,
𝑣−1

2
 for v (odd),  

            = 2, ∀ 𝑖 = 1, 2, 3, . . . , [
𝑣

2
− 1] for v (even), 

            = 1 for 𝑖 =
𝑣

2
 . 

Let us consider two cases of two mutually ith associates 

viz.; (I) 𝜃 and 𝜃 + 𝑖  
Case I: 𝜃 and 𝜃 + 𝑖 are two mutually ith associates 

Now, the jth associate to 𝜃 are 𝜃 ± 𝑗 and the mth associate 

to 𝜃 + 𝑖 are 𝜃 + 𝑖 ± 𝑚. 

Therefore, 𝑝𝑗𝑚
𝑖  = ‖{𝜃 ± 𝑗 } ∩ {𝜃 + 𝑖 ± 𝑚}‖ 

  = ‖{𝜃 + 𝑗, 𝜃 − 𝑗} ∩ { 𝜃 + 𝑖 + 𝑚, 𝜃 + 𝑖 −
𝑚}‖.  (3) 

For the possible values of 𝑝𝑗𝑚
𝑖 , there are three possible 

subcases. 

Subcase I 

As i, j and m are known natural numbers for any 𝜃 

 𝜃 + 𝑗 =  𝜃 + 𝑖 + 𝑚, 𝜃 + 𝑗 ≠  𝜃 + 𝑖 − 𝑚;    
 𝜃 + 𝑗 =  𝜃 + 𝑖 − 𝑚, 𝜃 + 𝑗 ≠  𝜃 + 𝑖 + 𝑚; 
 𝜃 −  𝑗 =  𝜃 + 𝑖 + 𝑚, 𝜃 − 𝑗 ≠  𝜃 + 𝑖 − 𝑚; 
 𝜃 −  𝑗 =  𝜃 + 𝑖 − 𝑚, 𝜃 − 𝑗 ≠  𝜃 + 𝑖 + 𝑚; 
Subcase II 

As i, j and m are known natural numbers for any 𝜃 

 𝜃 + 𝑗 ≠  𝜃 + 𝑖 + 𝑚, 𝜃 + 𝑗 ≠  𝜃 + 𝑖 − 𝑚;    
 𝜃 − 𝑗 ≠  𝜃 + 𝑖 − 𝑚, 𝜃 − 𝑗 ≠  𝜃 + 𝑖 + 𝑚; 
Subcase III 

As i, j and m are known natural numbers for any 𝜃 

 𝜃 + 𝑗 =  𝜃 + 𝑖 + 𝑚, 𝜃 − 𝑗 =  𝜃 + 𝑖 − 𝑚;    
 𝜃 + 𝑗 =  𝜃 + 𝑖 − 𝑚, 𝜃 − 𝑗 = 𝜃 + 𝑖 + 𝑚. 
As i, j and m are fixed for particular 𝑝𝑗𝑚

𝑖 , for varying 

values of 𝜃 exactly, only one of the subcases I, II, and III 

holds good. Hence, 𝑝𝑗𝑚
𝑖  is unique as long as i, j and m 

have fixed values for a particular 𝑝𝑗𝑚
𝑖 . 

Thus, this relationship, i.e., 𝜃 is the ith associate of 𝜃 + 𝑖, 
satisfies the three conditions of the association scheme. 

In the (3), the possible common elements between 
{𝜃 ± 𝑗 } and {𝜃 + 𝑖 ± 𝑚} can be in two different ways as 

follows: 

(i) 𝜃 + 𝑗 =  𝜃 + 𝑖 + 𝑚, 𝜃 + 𝑗 ≠  𝜃 + 𝑖 − 𝑚;  
or 

          𝜃 + 𝑗 =  𝜃 + 𝑖 − 𝑚, 𝜃 + 𝑗 ≠  𝜃 + 𝑖 + 𝑚. 

(ii) 𝜃 −  𝑗 =  𝜃 + 𝑖 + 𝑚, 𝜃 − 𝑗 ≠  𝜃 + 𝑖 − 𝑚;  
or 

𝜃 −  𝑗 =  𝜃 + 𝑖 − 𝑚, 𝜃 − 𝑗 ≠ 𝜃 + 𝑖 + 𝑚. 

Then, 𝑝𝑗𝑚
𝑖 = 0, if both (i) and (ii) are not satisfied, 

      = 1, if either (i) or (ii) is satisfied, 

      = 2, if both (i) and (ii) are satisfied. 

Case II: 𝜃 and 𝜃 − 𝑖 are two mutually ith associates. 

Now, the jth associate to 𝜃 are 𝜃 ± 𝑗 and the mth associate 

to 𝜃 − 𝑖 are 𝜃 − 𝑖 ± 𝑚. 

Therefore, 𝑝𝑗𝑚
𝑖  = ‖{𝜃 ± 𝑗 } ∩ {𝜃 − 𝑖 ± 𝑚}‖ 

= ‖{𝜃 + 𝑗, 𝜃 − 𝑗} ∩ { 𝜃 − 𝑖 + 𝑚, 𝜃 − 𝑖 − 𝑚}‖. (4) 

For the possible values of 𝑝𝑗𝑚
𝑖 , there are three possible 

subcases 

Subcase I: 

As i, j and m are known natural numbers for any 𝜃 

 𝜃 + 𝑗 =  𝜃 − 𝑖 + 𝑚, 𝜃 + 𝑗 ≠  𝜃 − 𝑖 − 𝑚;    
 𝜃 + 𝑗 =  𝜃 − 𝑖 − 𝑚, 𝜃 + 𝑗 ≠  𝜃 − 𝑖 + 𝑚; 
 𝜃 −  𝑗 =  𝜃 − 𝑖 + 𝑚, 𝜃 − 𝑗 ≠  𝜃 − 𝑖 − 𝑚; 

 𝜃 −  𝑗 =  𝜃 − 𝑖 − 𝑚, 𝜃 − 𝑗 ≠  𝜃 − 𝑖 + 𝑚. 

Subcase II: 

As i, j and m are known natural numbers for any 𝜃 

 𝜃 + 𝑗 ≠  𝜃 − 𝑖 + 𝑚, 𝜃 + 𝑗 ≠  𝜃 − 𝑖 − 𝑚;    
 𝜃 − 𝑗 ≠  𝜃 − 𝑖 − 𝑚, 𝜃 − 𝑗 ≠  𝜃 − 𝑖 + 𝑚. 

Subcase III: 

As i, j and m are known natural numbers for any 𝜃 

 𝜃 + 𝑗 =  𝜃 − 𝑖 + 𝑚, 𝜃 − 𝑗 =  𝜃 − 𝑖 − 𝑚;    
 𝜃 + 𝑗 =  𝜃 − 𝑖 − 𝑚, 𝜃 − 𝑗 = 𝜃 − 𝑖 + 𝑚. 
As i, j and m are fixed for particular 𝑝𝑗𝑚

𝑖 , for varying values 

of 𝜃 exactly, only one of the subcases I, II, and III holds 

good. Hence, 𝑝𝑗𝑚
𝑖  is unique as long as i, j and m have fixed 

values for a particular 𝑝𝑗𝑚
𝑖 . 

Thus, this relationship, i.e., 𝜃 is the ith associate of 𝜃 − 𝑖, 
satisfies the three conditions of the Association Scheme. 
In the (4), the possible common elements between 
{𝜃 ± 𝑗 } and {𝜃 − 𝑖 ± 𝑚} can be in two different ways as 

follows: 

(i) 𝜃 + 𝑗 =  𝜃 − 𝑖 + 𝑚, 𝜃 + 𝑗 ≠  𝜃 − 𝑖 − 𝑚;  or 

        𝜃 + 𝑗 =  𝜃 − 𝑖 − 𝑚, 𝜃 + 𝑗 ≠  𝜃 − 𝑖 + 𝑚. 

(ii) 𝜃 − 𝑗 =  𝜃 − 𝑖 + 𝑚, 𝜃 − 𝑗 ≠  𝜃 − 𝑖 − 𝑚;  or 

        𝜃 − 𝑗 =  𝜃 ∓ 𝑖 − 𝑚, 𝜃 − 𝑗 ≠  𝜃 − 𝑖 + 𝑚. 

Then, 𝑝𝑗𝑚
𝑖 = 0, if both (i) and (ii) are not satisfied 

      = 1, if either (i) or (ii) is satisfied 

      = 2, if both (i) and (ii) are satisfied. 

Remark: Such Circular Association Scheme may have 

𝑝𝑗𝑚
𝑖 = 0, 1 𝑜𝑟 2 for different i, j and m. 

III. CONSTRUCTION OF LTFCPBIB DESIGN 

A. For 𝒗 = 𝟐𝒌 − 𝟏 

For 𝑣 = 2𝑘 − 1, based on the Preposition 1, a series of 

LTFCPBIB designs, is constructed in the following 

theorem.   

Theorem 3.1- Developing the initial block {1, 2, … , 𝑘} 

under the reduction mod( 2𝑘 − 1), the construction of 

LTFCPBIB design with the following parameters is always 
possible, 

 𝑣 = 𝑏 = 2𝑘 − 1, 𝑟 = 𝑘, 𝜆1 = 𝑘 − 1, 𝜆2 = 𝑘 −
2, … , 𝜆𝑘−1 = 1, 𝑛1 = 𝑛2 = 𝑛3 = ⋯ = 𝑛𝑘−1 = 2. 

Proof: By developing {1,2, … , 𝑘}  as the initial block of a 

design with mod(𝑣 = 2𝑘 − 1), we get 2𝑘 − 1 blocks. 

Therefore, 𝑏 = 2𝑘 − 1. 
By the nature of developing the initial block, every 

element in the different positions of the block gets 

replicated once. 

As there are 𝑘 elements (i.e., 𝑘 positions) in the initial block 

and every element 𝑖. 𝑒. , 0, 1, 2, … , (𝑣 − 1) appears once in 

each position. So, 𝑟 = 𝑘.  

For any treatment 𝜃, all the 𝑗𝑡ℎ associates to 𝜃 are 𝜃 ± 𝑗; 

∀ 𝑗 = 1, 2, 3, … , (𝑘 − 1). 

Calculating all possible differences that arisen from the 

initial block {1,2, … , 𝑘}, we get  

Possible pairs   Number of pairs their differences 

(𝑘 − 1) (1, 2), (2, 3), … , (𝑘 − 1, 𝑘)  ±1 𝑖. 𝑒. , 1, 2𝑘 − 2 
(1, 3), (2, 4), … , (𝑘 − 2, 𝑘)     (𝑘 − 2) ± 2 𝑖. 𝑒. , 2, 2𝑘 − 3 
(1, 4), (2, 5), … , (𝑘 − 3, 𝑘)      (𝑘 − 3) ± 3 𝑖. 𝑒. , 3, 2𝑘 − 4              

⁞ ⁞                             ⁞ 
(1, 𝑘 − 1), (2, 𝑘),  2 ±(𝑘 − 2) 𝑖. 𝑒. , (𝑘 − 2), (𝑘 + 1) 
(1, 𝑘), 1  ±(𝑘 − 1) 𝑖. 𝑒. , (𝑘 − 1), 𝑘. 

Then, the treatments at distance ±1 𝑖. 𝑒. , 1, 2𝑘 − 2 are the 

1st associate; 
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the treatments at distance ±2 𝑖. 𝑒. , 2, 2𝑘 − 3 are the 2nd 

associate; 

⁞ 

the treatments at distance ±𝑘 − 2 are ±(𝑘 − 2) 𝑖. 𝑒. , (𝑘 −
 2), (𝑘 + 1) are the (𝑘 − 2)𝑡ℎ  associate; 

the treatments at distance ±𝑘 − 1  are 𝑖. 𝑒. , (𝑘 −  1), 𝑘 are 

the  (𝑘 − 1)𝑡ℎ associate. 

So, 𝑛1 = 𝑛2 = 𝑛3 = ⋯ = 𝑛𝑘−1 = 2. 

Since 𝜃 and 𝜃 + 1 [𝜃 and 𝜃 + (2𝑘 − 2)] are mutually 1st 

associate to one another, then they occur together in (𝑘 −
1) blocks. Therefore, 𝜆1 = 𝑘 − 1. 
Similarly, 𝜆2 = 𝑘 − 2, 𝜆3 = 𝑘 − 3, … , 𝜆𝑘−1 = 1. 
Since every treatment occurs once in each position, then 

𝑆𝑑𝑖𝑙, the number of times that treatment 𝑖 appears in position 

𝑙 is equal to 1 ∀ 𝑙 = 1, 2, 3, … , 𝑘. 

By,  𝜙1(1) = −𝜙1(𝑘); 𝜙1(2) = −𝜙1(𝑘 − 1) and so on. 

Now, for 𝑘 = even 

∑ 𝑆𝑑𝑖𝑙

𝑘

𝑙=1

𝜙1(𝑙) 

= ∑ 𝜙1(𝑙)

𝑘

𝑙=1

 

= 𝜙1(1) + 𝜙1(2) + ⋯ + 𝜙1((𝑘/2) − 1) + 𝜙1(𝑘/2)
+ 𝜙1((𝑘/2) + 1) + ⋯ + 𝜙1(𝑘 − 1)
+ 𝜙1(𝑘) 

= 𝜙1(1) + 𝜙1(2) + ⋯ + 𝜙1(𝑘/2) − 𝜙1(𝑘/2) − ⋯
− 𝜙1(2) − 𝜙1(1) 

= 0. 

Again, for 𝑘 = odd 

∑ 𝑆𝑑𝑖𝑙

𝑘

𝑙=1

𝜙1(𝑙) 

= ∑ 𝜙1(𝑙)

𝑘

𝑙=1

 

= 𝜙1(1) + 𝜙1(2) + ⋯ + 𝜙1(
𝑘 + 1

2
− 1)

+ 𝜙1 (
𝑘 + 1

2
)

+ 𝜙1 (
𝑘 + 1

2
+ 1)   + ⋯

+ 𝜙1(𝑘 − 1) + 𝜙1(𝑘) 

= 𝜙1(1) + 𝜙1(2) + ⋯ + 𝜙1 (
𝑘 + 1

2
− 1)

+ 𝜙1 (
𝑘 + 1

2
)

− 𝜙1 (
𝑘 + 1

2
− 1) − ⋯

− 𝜙1(2) − 𝜙1(1) 

= 0. 
Hence, proof of the theorem is complete. 

The Theorem 3.1 is illustrated below through an example. 

Example 3.1 The configuration of the LTFCPBIBD with 

the parameters 𝑣 = 𝑏 = 7,  r = k = 4, 𝜆1 = 3,  𝜆2 =
2, 𝜆3 = 1, 𝑛1 = 𝑛2 = 𝑛3 = 2 is as follows.  

The first row in the configuration represents the orthogonal 

polynomial of degree one without normalization. 

 

 

 

 

 

Block Trend Component 

-2 -1 1 2 

𝐵1  1 2 3 4 

𝐵2 2 3 4 5 

𝐵3 3 4 5 6 

𝐵4 4 5 6 0 

𝐵5 5 6 0 1 

𝐵6 6 0 1 2 

𝐵7 0 1 2 3 

Circular positions of 7 treatments in Circular Association 
scheme are shown in the below figure 1 and table 1. 

 

Figure 1: Circular Association Scheme for 7 treatments. 

Table 1: The associates of each treatment for the above 

design 

Treatments 1st associates 2nd associates 3rd associates 

0 1, 6 2, 5 3, 4 

1 2, 0 3, 6 4, 5 

2 3, 1 4, 0 5, 6 

3 2, 4 1, 5 6, 0 

4 3, 5 2, 6 1, 0 

5 4, 6 3, 0 1, 2 

6 0, 5 1, 4 2, 3 

Corollary 3.1 Developing the initial block {1, 2, … , 𝑘} under 

the reduction mod( 2𝑘), the construction of LTFCPBIBD 

with the following parameters is always possible, 

 𝑣 = 𝑏 = 2𝑘, 𝑟 = 𝑘, 𝜆1 = 𝑘 − 1, 𝜆2 = 𝑘 −
2, … , 𝜆𝑘−1 = 1, 𝜆𝑘 = 0, 

 𝑛1 = 𝑛2 = 𝑛3 = ⋯ = 𝑛𝑘−1 = 2, 𝑛𝑘 = 1. 

Corollary 3.2 Developing the initial block {1,2, … , 𝑘} 
under the reduction mod(2𝑘 + 1), the construction of 

LTFCPBIBD with the following parameters is always 

possible, 

 𝑣 = 𝑏 = 2𝑘 + 1, 𝑟 = 𝑘, 𝜆1 = 𝑘 − 1, 𝜆2 = 𝑘 −
2, … , 𝜆𝑘−1 = 1, 𝜆𝑘 = 0,  

 𝑛1 = 𝑛2 = 𝑛3 = ⋯ = 𝑛𝑘−1 = 𝑛𝑘 = 2. 

Corollary 3.3 Developing the initial block {1,2, … , 𝑘} under 

the reduction mod(2𝑘 − 2), the construction of 

LTFCPBIBD with the following parameters is always 

possible, 

 𝑣 = 𝑏 = 2𝑘 − 2, 𝑟 = 𝑘, 𝜆1 = 𝑘 − 1, 𝜆2 = 𝑘 −
2, … , 𝜆𝑘−2 = 2, 𝜆𝑘−1 = 2,  

 𝑛1 = 𝑛2 = 𝑛3 = ⋯ = 𝑛𝑘−2 = 2, 𝑛𝑘−1 = 1. 
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IV. CONCLUSION 

This paper constructs a series of linear trend-free circular 
(LTFC) partially balanced incomplete block (PBIB) 

designs for any block size k≥2. 
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