A System to Filter Unnecessary Posts from OSN User Walls And Prevent Inference Attacks

A.A.Kothari
Computer Department MET’s BKC IOE, Nashik, Savitribai Phule Pune University, India
alpakothari21@gmail.com

M.U.Kharat
Computer Department MET’s BKC IOE, Nashik, Savitribai Phule Pune University, India
mukharat@rediffmail.com

Abstract— Now a day’s social Networks are more popular. Users are using multiple applications for social media. Users post their comments on their private space to avoid that unwanted content is displayed. To overcome this problem, Author proposes a system allowing OSN users to have a direct control on the messages posted on their walls. The system explores how to prevent personal information using learning algorithm. This paper describes how to launch inference attacks using released social networking applications data to predict private information. Then author have 3 different techniques which can be used in such situations.

Keywords: Online social networks, information filtering, short text classification, Sanitization Techniques, policy-based personalization.

I. INTRODUCTION

Social networks are the hottest online trend of the last few years to meet people and share information with them. Users of these online networking sites form a social network, which provides a powerful means of organizing and finding useful information. In existence, On-line Social Networks have become a admired interactive medium to communicate, share and broadcast information about human life. Daily and constant communications imply the swap of several types of content, with image, audio, free text, and video data. The vast and lively character of these data creates the basis for the employment of web content mining program aimed to automatically find substantive information inactive within the data and then give an active support in complex and critical tasks included in social networking analysis and management. A noticeable example are the messages permanently written by online social network users on public/private areas, called in general walls was part of social network content and constitute by short text [1].

Information filtering can be used to give users the ability to routinely control the posts written on user general wall, by filtering out unnecessary messages. It believes that, from so far the basic online social network service has not been provided. In fact, nowadays online social networks provide very slight support to filter or remove or avoid unnecessary messages on their own walls. For example, Face-book provide facility to users that, they decide who is allowed to post messages on their walls (i.e., friends of friends, friends, or defined groups of friends) but it does not provide facility to prevent undesired messages such as political issue related or vulgar, or any other unnecessary message, as no content-based preferences are supported without considering who is going to posts them. This service is not only for using earlier defined web content mining procedure for a dissimilar application, but it requires to designs ad-hoc categorization strategies. This is due to that short text organizes wall messages by using traditional classification methods which have serious restrictions since short texts do not provide enough word occurrences. The aim of current work is to give a system which is able to filter unnecessary messages from online social network user which is called as Filtered wall (FW). System uses Machine Learning (ML) text categorization procedure [8] able to automatically assign to each short text message as a set of categories based on its content. To the best on our data this is the first proposal of a system which automatically filter unnecessary messages from online social network user walls by using message content along with the message creator relationships and characteristics.

II. LITERATURE SURVEY

In the literature survey I am going to discuss recent methods over the Content-based Filtering in OSN. Below in literature survey I am discussing some of them.

Nicholas J. Belkin and W. Bruce Croft has been discussed relationship between information _iltering and information retrieval and they come to the conclude that both are two sides of the same coin [2]. The previous recommended systems use social filtering methods that base recommendations on other users’ preferences.
By contrast R. J. Mooney and L. Roy describe a content-based book recommending system that utilizes information extraction and a machine-learning algorithm for text categorization. This way they improve access to relevant products and information [3]. The assignment of natural language texts categorization is an important component in many information organization and management tasks.

S. Dumais, J. Platt, D. Heckerman, and M. Sahami compare the effectiveness of five different automatic learning algorithms for text categorization in terms of learning speed, real-time classification speed, and classification accuracy and they conclude that Linear Support Vector Machines (SVMs) are most accurate classifier, fastest to train, and quick to evaluate. They used SVMs for categorizing email messages and Web pages [5].

Sarah Zelikovitz, Haym Hirsh describe a method for improving the classification of short text strings using a combination of labeled and unlabeled but related longer documents [4].

Fang, R.W., LeFevre, K. [13] Privacy is an important problem in OSNs. While these sites are growing rapidly in popularity, existing policy configuration tools are difficult for typical users to understand and use. This paper presented a template for the design of a privacy wizard, which removes much of the load of individual users. At a high level, the wizard solicits a limited amount of input from the user. Using this input, and other information already visible to the user, the wizard infers a privacy-preference model defining the user's personal privacy preferences. This model, then, used automatically to configure the user's detailed privacy settings.

Fong, P.W.L., Anwar, M.M., Zhao, Z. [14] They have formalized the distinct access control paradigm behind the Facebook privacy preservation mechanism into an access control model, which delineates the design space of protection mechanisms under this paradigm of access control. They have also demonstrated how the model can be instantiated to express access control policies that possess rich and natural social significance.

III. METHODOLOGY

In fact, today OSNs provide very little support to avoid unnecessary posts on user general walls. For example, Facebook allows users to state who is allowed to insert posts in their walls (i.e., friends, friends of friends, or defined groups of friends) [1]. However, no content-based preferences are supported and therefore it is not possible to avoid unnecessary posts, such as political or vulgar ones, no matter of the user who posts them.

A. Content based filtering

It considers three main issues in defining the language for Filtering rules specification. The one is related to the fact that, the different meaning with the same message and decided on relevance based on who writes it. FR applied message creators can be selected on the basis of various different criteria out of which first one of the most applicable is by considering their profile’s attributes. Users state constraints on message creators by using filtering rule. Creators may also uses exploiting information on their social graph for identification. For applying the specified rule it considers depth and trust values of the relationship specified.

B. Blocklists

Author decides that user have been able to decide by self that who has to be banned from user general walls and for how much time by specifying Blacklist rules and regulation, so that user might be banned from a one wall but at the same time user able to post in other walls. Similar to filtering methods, owner able to identify users to be blocked according to their relationships in the online social network as well as their profiles by using Blacklist rule. This banning time period can be undetermined or for a specific time window also. Banning criteria may also consider into user’s account behavior in the online social network. There is various possible information denoting users’ bad behavior, among those author has to decide to consider two main measures. Out of two main measures the first consideration is that within a particular time period user entered into Blacklist for several time that is suppose greater than given threshold the user might responsible to stay in the Blacklist for another as soon as behavior is not improved. If the users already inserted in the considered Blacklist at least one time then and then this principle works on this user. And the second measure in contrast to Blacklist author uses Relative Frequency (RF) to catch new bad behaviors, which help the system to detect those users whose messages continuously blocked in the Filtering Methods. These two measures are considered locally or globally. Locally refers only the messages and/or the blacklist of the user specifying the Blacklist rule and globally refers all online social network users’ walls and/or Blacklists.
C. Detail Removal

Our method is successful in removing the details. This is the most highly connected with a class to remove details of links. The accuracy of links classifier is also decreased as by remove details. The details of two nodes are compared to find a similarity. As we remove details from the network, the set of “similar” nodes to any given node will also change. This can account for the decrease in accuracy of the links classifier.

D. Link Removal

The systems have a generally more stable downward trend, with only a few exceptions in the “political affiliation” experiments.

E. Combined Removal

While each measure provides a decrease in classification accuracy, the system also test what happens in our data set if both details and links removed. To do this, it conduct further experiments where we test classification accuracy after removing 0 details and 0 links (the baseline accuracy), 0 details and 10 links, 10 details and 0 links, and 10 details and 10 links. We choose these numbers because after removing 12 links, we found that we were beginning to create a number of isolated groups of few nodes or single, disconnected nodes.

IV. PROPOSED SYSTEM

The aim of the current work is to evaluate an automated system, called Filtering Wall (FW), capable to filter unnecessary messages from online social network user walls. It make use of Machine Learning (ML) text classification techniques [15] to assign with each short text message a set of categories based on its content. The construction of robust short text classifier is on the basis of withdrawal and choice of a set of characterizing and also on discriminating features. Earlier work are also refer to find the solution in this paper and also elicitation procedure and learning model are also inherited in this work for giving pre-classified data.

Properties of short texts gives the original set of features, and are enlarged here which include knowledge related to the context from which the messages initiated. Learning model is concerned with authentication of the use of neural learning from so far but nowadays it recognized as one of the best solutions in text classification [15]. The short text classification strategy based on Radial Basis Function Networks (RBFN) and capable to act as soft classifiers, manage noisy data and intrinsically vague classes.

The table shows the detail mathematical model of the system as considering following points:

1. Problem description.
2. Activity.
3. Vein Diagram.
5. Functional Dependencies.

TABLE1

<table>
<thead>
<tr>
<th>MATHEMATICAL MODEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comment Posting</td>
</tr>
<tr>
<td>Filtering Policy</td>
</tr>
<tr>
<td>Black List</td>
</tr>
<tr>
<td>Inference Attack Prevention</td>
</tr>
<tr>
<td>Sanitization Technique</td>
</tr>
<tr>
<td>Short Text Classifier</td>
</tr>
</tbody>
</table>

Fig. 1. Block Diagram of Proposed System
A System to Filter Unnecessary Posts from OSN User Walls And Prevent Inference Attacks

<table>
<thead>
<tr>
<th>Sr No.</th>
<th>Description</th>
<th>UML design observations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The system aims is One fundamental issue in today On-line Social Networks (OSNs) is to give users the ability to control the messages posted on their own private space to avoid that Unnecessary content. 1) Comment Posting. 2) Content Based Filter. 3) Inference Attach Prevention. 4) Short Text Classifier. Let the system be described by S, S=(D, CP, DF, AP, AP, TC)</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Activity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D={d1, d2, …….., dn} F={f1, f2, …….., fn} Y={ CP, DF, AP, AP, TC } D is Set of Dataset. F is the set of Functions. Y is a set of techniques use for A System To Filter Unwanted OSN User Walls.</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>State diagram</td>
<td>Fn1: Comment Posting Fn2: Comment Based Filter Fn3: Inference Attach Prevention Fn4: Short Text Classifier</td>
</tr>
<tr>
<td>5.</td>
<td>Functional Dependencies</td>
<td>Fn1: Comment Posting Fn2: Comment Based Filter Fn3: Inference Attach Prevention Fn4: Short Text Classifier</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Fn1</th>
<th>Fn2</th>
<th>Fn3</th>
<th>Fn4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fn1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fn2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fn3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Fn4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
IV. Result

The analysis aimed to evaluate the completeness of the training set used in the experiments to see to what extent the size of the dataset substantially contributes to the quality of classification. The analysis was conducted considering different training set configurations obtained with incremental fractions of the overall training set. For each fraction, it performed 50 different distributions of messages between training set and test set, in order to reduce the statistical variability of each evaluation. The results, shown in Fig. 2, was obtained for each dataset fraction by averaging the K evaluation metric over 50 independent trials. Improvement in the classification has a logarithmic growth in function of the size of the dataset. This suggests that any further efforts focused in the enlargement of the dataset will probably lead to small improvements in terms of classification quality.

IV. CONCLUSIONS

In this paper, the edibility of the system in terms of filtering options is enhanced through the management of BLs. Author has offered a system to filter out undesired posts from OSN walls. The system makes use of a ML soft classifier to enforce customizable content-depended filtering rules. Moreover, the author has offered a system to filter out undesired posts from OSN walls. The system make use of a ML soft classifier to enforce customizable content depended filtering rules, the system can automatically take a decision about the messages blocked because of the tolerance, on the basis of some statistical data (e.g., number of blocked posts from the same author, number of times the creator has been inserted in the BL) as well as data on creator profile (e.g., relationships with the wall owner, age, sex). In future it intends to make use of similar techniques to infer BL and filtering rules.

ACKNOWLEDGMENT

The Author wish to thank MET’s BKC Institute of Engineering Nashik, HOD of computer Department and Parents for supporting and motivating for this work. And without their blessing this won’t be possible softly.

REFERENCES

A System to Filter Unnecessary Posts from OSN User Walls And Prevent Inference Attacks

